scholarly journals Muscle Glucose Uptake Does Not Increase When Only Local Arterial Glucose Concentration Is Increased

Diabetes ◽  
2002 ◽  
Vol 51 (9) ◽  
pp. 2698-2702 ◽  
Author(s):  
K. Zierler ◽  
R. Andres
1984 ◽  
Vol 246 (3) ◽  
pp. E237-E242 ◽  
Author(s):  
W. W. Hay ◽  
J. W. Sparks ◽  
R. B. Wilkening ◽  
F. C. Battaglia ◽  
G. Meschia

Seventeen studies were performed in 12 pregnant sheep to examine the relationship among simultaneously measured glucose uptake via the umbilical circulation, fetal glucose utilization (mg X min-1 X kg-1), and maternal arterial glucose (Gm, mg/dl). Fetal glucose utilization was measured by means of tracer glucose infused into the fetus or both mother and fetus. By fasting the ewe, Gm was varied in the 62-22 range. A decrease in Gm was accompanied by a significant (P less than 0.001) decrease in umbilical uptake (uptake = 0.09 Gm - 0.96, r = 0.82) and in fetal utilization, measured either by [U-14C]glucose (utilization = 0.062 Gm + 0.91, r = 0.90) or [6-3H]glucose (utilization = 0.065 Gm + 0.51, r = 0.91). At uptake greater than 3 mg X min-1 X kg-1, utilization and uptake were not significantly different. At lower uptakes, utilization did not decline as much as uptake. The results demonstrate that maternal fasting decreases both the umbilical uptake and the fetal utilization of glucose and suggest that fetal glucogenesis increases when the availability of exogenous glucose is markedly reduced.


1992 ◽  
Vol 12 (5) ◽  
pp. 856-865 ◽  
Author(s):  
Ted S. Rosenkrantz ◽  
Anthony F. Philipps ◽  
Isabella Knox ◽  
Edwin L. Zalneraitis ◽  
Patricia J. Porte ◽  
...  

In contrast to previous investigations, a recent study of polycythemic lambs suggested that cerebral glucose delivery (concentration × blood flow), not arterial glucose concentration, determined cerebral glucose uptake. In the present study, the independent effects of arterial glucose concentration and delivery on cerebral glucose uptake were examined in two groups of chronically catheterized newborn lambs (control and polycythemic). Arterial glucose concentration was varied by an infusion of insulin. CBF was reduced in one group of lambs (polycythemic) by increasing the hematocrit. At all arterial glucose concentrations, the cerebral glucose delivery of the polycythemic group was 59.6% of the control group. At arterial glucose concentrations of > 1.6 mmol/L, cerebral glucose uptake was constant and similar in both groups. At arterial glucose concentrations of ≤1.6 mmol/L, cerebral glucose uptake was unchanged in the control group, but was significantly decreased in the polycythemic group. In contrast, the cerebral glucose uptake was similar in both groups over a broad range of cerebral glucose delivery values. At cerebral glucose delivery values ≤83 μmol/min/100 g, there was a significant decrease in cerebral glucose uptake in both groups. During periods of low cerebral glucose delivery and uptake, cerebral oxygen uptake fell in the control group but remained unchanged in the polycythemic group. Maintenance of cerebral oxygen uptake in the polycythemic group was associated with an increased extraction and uptake of lactate and β-hydroxybutyrate. We conclude that cerebral glucose delivery, not arterial glucose concentration alone, determines cerebral glucose uptake.


PEDIATRICS ◽  
1972 ◽  
Vol 50 (3) ◽  
pp. 361-371
Author(s):  
Elizabeth J. James ◽  
John R. Raye ◽  
Edwin L. Gresham ◽  
Edgar L. Makowski ◽  
Giacomo Meschia ◽  
...  

Metabolic studies were carried out in 22 sheep fetuses free of operative stress. The studies included measurements of umbilical blood flow (175 ± 8 ml/min/kg), fetal oxygen consumption (5.99 ± 0.15 ml/min/kg), carbon dioxide production (5.65 ± 0.17 ml/min/kg), glucose uptake (3.06 ± 0.28 mg/min/kg), respiratory quotient (0.94 ± 0.01), and glucose/oxygen quotient·(0.41 ± 0.03). The studies demonstrated that fetal glucose uptake could be correlated with the glucose concentration difference betsveen maternal arterial and fetal umbilical arterial blood, as well as with maternal arterial glucose concentration. Umbilical arterial glucose concentration was a function of maternal arterial concentration over the concentration range studied. The study demonstrates that the fetal respiratory quotient is significantly less than one. These data suggest that the accumulation of carbon in the fetus for growth represents approximately 40% of the carbon intake in the growing fetal lamb.


2001 ◽  
Vol 68 (3) ◽  
pp. 337-349 ◽  
Author(s):  
METTE O. NIELSEN ◽  
TORBEN G. MADSEN ◽  
ANNE MARIE HEDEBOE

Variations in mammary glucose uptake were measured during the normal pregnancy-lactation cycle in dairy goats. In addition mammary glucose uptake was studied in response to somatotropin (ST) treatment in mid-lactation and acute increases in glucose concentration induced by sodium-propionate challenge in early lactation. Mammary glucose uptake was independent of arterial glucose, insulin and Insulin-like Growth Factor-1 (IGF-1) concentrations during lactation and during acute increases in arterial glucose concentration. Glucose uptake in the lactating mammary gland of the goat must therefore be carried out by an insulin-independent carrier, possible GLUT1, and glucose supply is not a limiting factor for uptake under in vivo conditions. Extraction of glucose uptake changed markedly during the normal course of lactation, following the overall changes in milk yield. Concentrations of glucose in skimmed milk, believed to reflect intracellular glucose concentration, changed in opposite directions, resulting in decreasing ratios of arterialratioskimmed milk glucose concentration with progressing lactation. Thus, mammary synthetic capacity also involves a capacity for glucose uptake, which may be influenced by variations in glucose carrier numbers, as well as mammary metabolic activity (intracellular glucose concentration). In contrast to the situation during the normal course of lactation, ST stimulated milk yield, despite less efficient glucose extraction.


INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (02) ◽  
pp. 57-62
Author(s):  
M. A Bhutkar ◽  
◽  
S. D Bhinge ◽  
D. S. Randive ◽  
G. H Wadkar ◽  
...  

The present investigation was undertaken to assess the hypoglycemic potential of Caesalpinia bonducella (C.bonducella) and Myristica fragrans (M.fragrans), employing various in vitro techniques. The extracts of seeds of C. bonducella and M. fragrans were studied for their effects on glucose adsorption capacity, in vitro glucose diffusion, in vitro amylolysis kinetics and glucose transport across the yeast cells. It was observed that the plant extracts under study adsorbed glucose and the adsorption of glucose increased remarkably with an increase in glucose concentration. There were no significant (p≤0.05) differences between their adsorption capacities. The results of amylolysis kinetic experimental model revealed that the rate of glucose diffusion was found to be increased with time from 30 to 180 min and both the plant extracts demonstrated significant inhibitory effects on movement of glucose into external solution across dialysis membrane as compared to control. Also, the plant extracts promoted glucose uptake by the yeast cells. It was observed that the enhancement of glucose uptake was dependent on both the sample and glucose concentration. C. bonducella extract exhibited significantly higher (p≤0.05) activity than the extract of M. fragrans at all concentrations. The results of the study verified the hypoglycemic activity of the extracts of C. bonducella and M. fragrans. However, the observed effects exhibited by the extracts of seeds of C. bonducella and M. fragrans need to be confirmed by using different in vivo models and clinical trials for their effective utilization as therapeutic agents in better management of diabetes mellitus.


Development ◽  
1987 ◽  
Vol 100 (3) ◽  
pp. 431-439 ◽  
Author(s):  
S.K. Ellington

The glucose metabolism and embryonic development of rat embryos during organogenesis was studied using embryo culture. Glucose uptake and embryonic growth and differentiation of 10.5-day explants (embryos + membranes) were limited by the decreasing glucose concentration, but not the increasing concentration of metabolites, in the culture media during the second 24 h of a 48 h culture. No such limitations were found on the embryonic development of 9.5-day explants during a 48 h culture although glucose uptake was slightly reduced at very low concentrations of glucose. From the head-fold stage to the 25-somite stage of development, glucose uptake was characteristic of the stage of development of the embryo and not the time it had been in culture. Embryonic growth of 9.5-day explants was similar to that previously observed in vivo. Glucose uptake by 9.5-day explants was dependent on the surface area of the yolk sac and was independent of the glucose concentration in the culture media (within the range of 9.4 to 2.5 mM). The proportion of glucose converted to lactate was 100% during the first 42h of culture then fell to about 50% during the final 6h. The protein contents of both the extraembryonic membranes and the embryo were dependent on the glucose uptake.


2000 ◽  
Vol 279 (2) ◽  
pp. E284-E292 ◽  
Author(s):  
Po-Shiuan Hsieh ◽  
Mary Courtney Moore ◽  
Doss W. Neal ◽  
Alan D. Cherrington

The aim of this study was to determine whether the elimination of the hepatic arterial-portal (A-P) venous glucose gradient would alter the effects of portal glucose delivery on hepatic or peripheral glucose uptake. Three groups of 42-h-fasted conscious dogs ( n = 7/group) were studied. After a 40-min basal period, somatostatin was infused peripherally along with intraportal insulin (7.2 pmol·kg−1·min−1) and glucagon (0.65 ng·kg−1·min−1). In test period 1 (90 min), glucose was infused into a peripheral vein to double the hepatic glucose load (HGL) in all groups. In test period 2 (90 min) of the control group (CONT), saline was infused intraportally; in the other two groups, glucose was infused intraportally (22.2 μmol·kg−1·min−1). In the second group (PD), saline was simultaneously infused into the hepatic artery; in the third group (PD+HAD), glucose was infused into the hepatic artery to eliminate the negative hepatic A-P glucose gradient. HGL was twofold basal in each test period. Net hepatic glucose uptake (NHGU) was 10.1 ± 2.2 and 12.8 ± 2.1 vs. 11.5 ± 1.6 and 23.8 ± 3.3* vs. 9.0 ± 2.4 and 13.8 ± 4.2 μmol · kg−1·min−1 in the two periods of CONT, PD, and PD+HAD, respectively (*  P < 0.05 vs. same test period in PD and PD+HAD). NHGU was 28.9 ± 1.2 and 39.5 ± 4.3 vs. 26.3 ± 3.7 and 24.5 ± 3.7* vs. 36.1 ± 3.8 and 53.3 ± 8.5 μmol·kg−1·min−1 in the first and second periods of CONT, PD, and PD+HAD, respectively (*  P < 0.05 vs. same test period in PD and PD+HAD). Thus the increment in NHGU and decrement in extrahepatic glucose uptake caused by the portal signal were significantly reduced by hepatic arterial glucose infusion. These results suggest that the hepatic arterial glucose level plays an important role in generation of the effect of portal glucose delivery on glucose uptake by liver and muscle.


Sign in / Sign up

Export Citation Format

Share Document