Characterization of Reinforced and Unreinforced Glass-Ceramic Veneers

2021 ◽  
Author(s):  
AR Oliveira ◽  
KS Jodha ◽  
SM Salazar Marocho ◽  
GA Galhano

SUMMARY This study aimed to characterize the surface topography, effect of polishing on surface roughness, residual stresses, and hardness in two glass-ceramic veneers. Fifty-two (52) upper incisors were collected, prepared, and scanned for ceramic veneers. Half of the teeth were restored with veneers made up of feldspathic ceramic (FE), and the other half with zirconia-reinforced lithium silicate ceramic (SZ). All the veneers were designed and milled using a CAD/CAM system and later cemented following the manufacturer’s guideline. An optical microscope analyzed the topography of the specimens before and after polishing. The surface roughness was measured using the roughness meter (n=12) and the topographical analysis was carried out using an atomic force microscope (n=6). The residual stresses and Vickers’ hardness were evaluated by the indentation method in a micro-hardness indenter (n=6). The surface roughness was analyzed using a three-way analysis of variance (ANOVA) followed by a post hoc Tukey test. The Student t-test was used to compare the residual stresses and hardness between the two ceramics. The topographical analysis revealed that both glass-ceramic veneers had similar percentages of specimens with cracks, before (34.6%) and after (42.3%) polishing. The surface roughness decreased after polishing (p<0.001), and the polishing smoothed out the surface of the veneers. The zirconia-reinforced lithium silicate veneer had a lower roughness as compared to the feldspathic one after polishing, while the residual stresses (p=0.722) and hardness (p=0.782) were statistically similar for both ceramic veneers.

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 381 ◽  
Author(s):  
Roxana-Diana Vasiliu ◽  
Sorin Daniel Porojan ◽  
Mihaela Ionela Bîrdeanu ◽  
Liliana Porojan

Dental ceramic restorations are widely spread nowadays due to their aesthetics and biocompatibility. In time, the colour and structure of these ceramic materials can be altered by aging processes. How does artificial aging affect the optical and surface roughness of ceramics? This study aims to assess the effect of thermocycling, surface treatments and microstructure upon translucency, opalescence and surface roughness on CAD-CAM and heat-pressed glass-ceramic. Forty-eight samples (1.5 mm thickness) were fabricated from six types of A2 MT ceramic: heat-pressed and milled glass-ceramic (feldspathic, lithium disilicate and zirconia reinforced lithium silicate). The samples were obtained respecting the manufacturer’s instructions. The resulted surfaces (n = 96) were half glazed and half polished. The samples were subjected to thermocycling (10,000 cycles) and roughness values (Ra and Rz), colour coordinates (L*, a*, b*) and microstructural analyses were assessed before and after thermocycling. Translucency (TP) and opalescence (OP) were calculated. Values were statistically analysed using ANOVA test (one way). TP and OP values were significantly different between heat-pressed and milled ceramics before and also after thermocycling (p < 0.001). Surface treatments (glazing and polishing) had a significant effect on TP and OP and surface roughness (p < 0.05). The heat-pressed and milled zirconia reinforced lithium silicate glass-ceramic experienced a loss in TP and OP. Ra and Rz increased for the glazed samples, TP and OP decreased for all the samples after thermocycling. Microstructural analyse revealed that glazed surfaces were more affected by the thermocycling and especially for the zirconia reinforced lithium silicate ceramic. Optical properties and surface roughness of the chosen ceramic materials were affected by thermocycling, surface treatments and microstructural differences. The least affected of the ceramics was the lithium disilicate ceramic heat-pressed polished and glazed.


Crystals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 160 ◽  
Author(s):  
Roxana-Diana Vasiliu ◽  
Sorin-Daniel Porojan ◽  
Mihaela-Ionela Bîrdeanu ◽  
Ion-Dragoș Uțu ◽  
Liliana Porojan

Dental ceramic restorations are widely used in restorative dentistry. However, these restorations can be affected once cemented in the oral cavity by several factors. How can conventional surface treatments, such as glazing and mechanical polishing, diminish the effects of aging? The purpose of this in vitro study was to evaluate the effect of thermocycling and conventional surface treatments on the surface roughness and microhardness of three types of glass-ceramics by using a profilometer, scanning electron microscopy (SEM), atomic force microscopy (AFM), and a microhardness tester. Three types of ceramic systems (zirconia reinforced lithium silicate glass-ceramic, lithium disilicate glass-ceramic, and feldspathic glass-ceramic) (n = 48) were prepared. The samples were subjected to thermocycling for 10,000 cycles. Surface roughness was evaluated numerically using a profilometer and visually by using SEM and AFM. Microhardness was performed using a microhardness tester. The data were interpreted using the ANOVA test, and the results were correlated using Pearson’s correlation formula (r). Significant differences were found before and after thermocycling for the Ra (p < 0.01) and Rz (p < 0.05) parameters. As well, differences between glazed and polished surfaces were significant before and after thermocycling for surface roughness and microhardness (p < 0.05). A correlation was made between average surface roughness and microhardness (r = −460) and for the maximum surface roughness and microhardness (r = −606). Aging increases the roughness and decreases in time the microhardness. The tested ceramic systems behaved differently to the aging and surface treatments. Surface treatments had a significant impact on the microhardness and surface characteristics. The glazed groups were reported with higher surface roughness and lower microhardness when compared to the polished groups before and after thermocycling. The measuring roughness techniques determine the scale-dependent values for the Ra (Sa) and Rz (Sq) parameters. Thermocycling almost doubled the surface roughness for all the tested samples. Microhardness decreased only for the Celtra glazed samples. Nano-roughness increased the values for Vita and slightly for Emax. Thermocycling had little effect on Emax ceramic and a more significant impact on Celtra Press ceramic.


2013 ◽  
Vol 284-287 ◽  
pp. 77-82
Author(s):  
Chia Yen Chan ◽  
Yi Cheng Chen ◽  
Chii Rong Yang ◽  
Ting Ming Huang

The present study is aimed at investigating the effect of acid etching durations on the surface roughness and birefringence of lightweight mirrors made of ZERODUR® glass ceramic. Four acid etching durations (15, 20, 25 and 30 min) have been chosen at a fixed concentration. By using the photoelasticity, surface profiler and laser microscope, the results before and after acid etching have been obtained. It is found the maximum value of the retardation for the polished lightweight ZERODUR® mirror is up to 30 nm. In addition, residual stresses induced by the grinding process with an average grain size of 149 μm are relived after removing ZERODUR® material of a thickness of 60 μm.


Author(s):  
H. Kinney ◽  
M.L. Occelli ◽  
S.A.C. Gould

For this study we have used a contact mode atomic force microscope (AFM) to study to topography of fluidized cracking catalysts (FCC), before and after contamination with 5% vanadium. We selected the AFM because of its ability to well characterize the surface roughness of materials down to the atomic level. It is believed that the cracking in the FCCs occurs mainly on the catalysts top 10-15 μm suggesting that the surface corrugation could play a key role in the FCCs microactivity properties. To test this hypothesis, we chose vanadium as a contaminate because this metal is capable of irreversibly destroying the FCC crystallinity as well as it microporous structure. In addition, we wanted to examine the extent to which steaming affects the vanadium contaminated FCC. Using the AFM, we measured the surface roughness of FCCs, before and after contamination and after steaming.We obtained our FCC (GRZ-1) from Davison. The FCC is generated so that it contains and estimated 35% rare earth exchaged zeolite Y, 50% kaolin and 15% binder.


2021 ◽  
Vol 9 (1) ◽  
pp. 8
Author(s):  
Murtadha AlAli ◽  
Nikolaos Silikas ◽  
Julian Satterthwaite

Objective: To evaluate and compare the surface roughness and gloss of a DMA-free composite and Bis-GMA-free composite with a DMA-based composite before and after toothbrushing simulation. Materials and Methods: Fifteen dimensionally standardised composite specimens of three nano-hybrid resin composites (Tetric EvoCeram, Admira Fusion, and Venus Diamond) were used. Five specimens from each composite were polished and then subjected to a toothbrushing simulator. Surface roughness (Ra) and gloss were measured before toothbrushing and after 5000, 10,000, 15,000, and 20,000 toothbrushing cycles. The data was analysed using 5 × 3 ANOVA to assess surface roughness and gloss values and pairwise comparisons in the form of Tukey post hoc tests were performed to interpret main effects. Results: For all tested materials, surface roughness increased, and gloss decreased after toothbrushing abrasion. Surface roughness (Ra) values ranged from 0.14 to 0.22 μm at baseline and increased to between 0.41 and 0.49 μm after 20,000 toothbrushing cycles. Gloss values ranged between 31.9 and 50.6 GU at baseline and between 5.1 and 19.5 GU after 20,000 toothbrushing cycles. The lowest initial Ra value was detected in Venus Diamond and the highest initial gloss value was detected in Tetric EvoCeram. Conclusions: Simulated toothbrushing abrasion led to an increase in surface roughness and a decrease in gloss for all tested materials. Venus Diamond had the smoothest surface and Tetric EvoCeram had the glossiest surface after polishing and following 20,000 cycles of toothbrushing abrasion. Admira Fusion demonstrated the roughest surface and had the lowest gloss values before and after toothbrushing abrasion.


2019 ◽  
Vol 44 (6) ◽  
pp. 637-647 ◽  
Author(s):  
CAK Shimokawa ◽  
M Giannini ◽  
CB André ◽  
BO Sahadi ◽  
JJ Faraoni ◽  
...  

SUMMARY Objectives: This study evaluated the effect of toothbrushing with a dentifrice on gloss, roughness profile, surface roughness, and wear of conventional and bulk-fill resin-based composites. Methods and Materials: Gloss and surface roughness of resin-based composites (RBCs; Admira Fusion X-tra, Aura Bulk Fill, Filtek Bulk Fill Flowable, Filtek Bulk Fill Posterior Restorative, Filtek Supreme Ultra, Herculite Ultra, Mosaic Enamel, SDR flow+, Sonic Fill 2, Tetric EvoFlow Bulk Fill and Tetric EvoCeram Bulk Fill) were analyzed before and after brushing; the roughness profile and wear were also determined after toothbrushing. Representative three-dimensional images of the surface loss and images comparing the unbrushed and brushed surfaces were also compared. Analysis of variance and Tukey post hoc tests were applied (α=0.05) to the gloss, surface roughness, roughness profile, and surface loss data. Pearson's correlation test was used to determine the correlation between gloss and surface roughness, surface loss and percentage of gloss decrease after brushing, and surface loss and surface roughness after brushing. Results: For all RBCs tested after 20,000 brushing cycles, the gloss was reduced and the surface roughness increased (p&lt;0.05). However, the roughness profile and the amount of surface loss were dependent on the RBC brand. Admira Fusion X-tra, Aura, Tetric EvoCeram Bulk Fill, and Tetric EvoFlow Bulk Fill showed the deepest areas of wear (p&lt;0.05). A significant negative correlation was found between gloss and surface roughness, and a weak correlation was found between the decrease in gloss and the extent of surface loss, and any increase in surface roughness and the surface loss. Conclusions: Toothbrushing with a dentifrice reduced the gloss, increased the surface roughness, and caused loss at the surface of all the RBCs tested. Considering all the properties tested, Mosaic Enamel exhibited excellent gloss retention and a low roughness profile and wear, while Admira Fusion X-tra exhibited the greatest decrease in gloss, the highest roughness profile, and the most wear.


Cerâmica ◽  
2016 ◽  
Vol 62 (362) ◽  
pp. 121-127 ◽  
Author(s):  
P. P. Kist ◽  
I. L. Aurélio ◽  
M. Amaral ◽  
L. G. May

Abstract The purpose of the present study was to determine the biaxial flexural strength (BFS) of a CAD/CAM leucite reinforced glass-ceramic ground by diamond burs of different grit sizes and the influence of surface roughness on the BFS. For this, 104 plates were obtained from CAD/CAM ceramic blocks and divided into 4 groups (n = 26), according to bur grit size: extra-fine, fine, medium and coarse. Roughness parameters (Ra, RyMax) were measured, and plates were kept dry for 7 days. The flexural test was carried out and BFS was calculated. Ra, RyMax and BFS data were subjected to analysis of variance and post-hoc test. Weibull analysis was used to compare characteristic strength and Weibull modulus. Regression analysis was performed for BFS vs. Ra and RyMax. When burs with coarse grit were used, higher surface roughness values were found, causing a negative effect on the ceramic BFS (117 MPa for extra-fine, and 83 MPa for coarse). Correlation (r) between surface roughness and BFS was 0.78 for RyMax and 0.73 for Ra. Increases in diamond grit size have a significant negative effect on the BFS of leucite-reinforced glass-ceramics, suggesting that grinding of sintered glass-ceramic should be performed using burs with the finest grit possible in order to minimize internal surface flaws and maximize flexural strength.


2019 ◽  
Vol 45 (4) ◽  
pp. 442-452 ◽  
Author(s):  
N Ilie ◽  
G Furtos

Clinical Relevance Light transmission through dental materials and tooth structure has direct clinical implication on such factors as selecting an appropriate curing technique during a restorative process. SUMMARY Introduction: This study aims to quantify and compare the amount of light that passes through seven different types of direct and indirect restorative materials comprising light-cured resin based composites (regular and bulk-fill), computer-aided design/computer-aided manufacturing (CAD/CAM) restoratives such as resin based composites, poly(methyl methacrylate) (PMMA) resin, leucite glass-ceramic, lithium silicate glass-ceramic, feldspar ceramic, and the natural tooth structure. Methods and Materials: Individual sets (n=6) of plane-parallel test specimens (2 mm) of 32 restorative materials belonging to the aforementioned seven material types and the tooth structure were prepared. Within the analyzed materials, one leucite glass-ceramic and one lithium disilicate glass-ceramic were considered in two different translucencies. In addition, two light-cured resin composites, one CAD/CAM resin composite, and one lithium disilicate glass-ceramic were considered in two different shades. Optical properties (transmittance, T; absorbance, A; and opacity, O) of each material were calculated from the relationship between incident and transmitted irradiance [I(d)] using a violet-blue light-curing unit. Incident and transmitted irradiance were assessed in real time on a spectrophotometer. A multivariate analysis (general linear model) assessed the effects of various parameters on the optical properties. Results: A very strong influence of the parameter material was identified on I(d) (p&lt;0.001; partial eta squared, ηP2=0.953), T (p&lt;0.001; ηP2=0.951), A (p&lt;0.001; ηP2=0.925), and O (p&lt;0.001; ηP2=0.886), while the effect of the parameter material type was not significant (p=0.079, p=0.05, p=0.05, and p=0.051, respectively). Light attenuation differed significantly by material within each shade category and by shade category within the analyzed material. Conclusions: Attenuation of light through restorative materials and tooth structure is high (59.9% to 94.9%); thus, deficits in polymerization are difficult to compensate for by additional light exposure at the end of the restorative process.


2014 ◽  
Vol 39 (5) ◽  
pp. 521-529 ◽  
Author(s):  
EM da Silva ◽  
CUF de Sá Rodrigues ◽  
DA Dias ◽  
S da Silva ◽  
CM Amaral ◽  
...  

SUMMARY The purpose of this study was to evaluate the influence of toothbrushing-mouthrinse-cycling (TMC) on the surface roughness and topography of three resin composites with different filler particle systems (Z350, nanofilled [Nf]; Durafill, microfilled [Mf], and Empress Direct, microhybrid [Mh]). Twenty specimens of each resin composite (8.0 mm diameter and 2 mm height) were randomly divided into four groups (n=5) according to the mouthrinses: alcohol-free (Plax – P) and alcohol-containing (Listerine – L and Plax Fresh Mint – PM) and artificial saliva (control – AS). The specimens were submitted to TMC for nine weeks. A surface roughness tester and a three-dimensional profilometer were used to measure the roughness (Ra) and the topography (Sa) before and after TMC. The data were analyzed by multifactor analysis of variance and Tukey post hoc test (α=0.05). In all media, Mh presented greater roughness than Mf (p&lt;0.05). The highest value of roughness was presented by Mh immersed in L (p&lt;0.05). The lowest values of roughness were presented by Mf (p&lt;0.05). The three resin composites presented the highest roughness after immersion in mouthrinses containing alcohol (PM and L) (p&lt;0.05). For the three resin composites, the increase in roughness was noticeable after the fifth week. Topographic analysis showed that the smoothest surfaces were present after immersion in AS.


2010 ◽  
Vol 25 (4) ◽  
pp. 708-710 ◽  
Author(s):  
Atsushi Ogura ◽  
Daisuke Kosemura ◽  
Shingo Kinoshita

4H-silicon carbide (SiC) wafers were annealed at 1300 and 1600 °C for 30 min and 60 min in a conventional and purified Ar atmosphere. The surface roughness before and after annealing was evaluated by atomic force microscopy. The surface roughness before annealing was approximately 2.37 nm in root mean square. The roughness, after annealing for 30 min at 1300 and 1600 °C in a conventional Ar furnace, was increased to 4.53 and 14.9 nm, respectively. The roughness, after annealing for 60 min, was 5.01 and 19.1 nm, respectively. In this study, the G3 grade Ar gas (99.999%) was supplied in the conventional furnace tube. When the Ar gas was purified to an impurity concentration of less than 1 ppb, and it was supplied in the leak-tight furnace tube, the roughness after 30-min annealing improved 4.27 and 6.93 nm at 1300 and 1600 °C, respectively. The roughness after 60-min annealing was also reduced to 3.54 and 9.28 nm, respectively. We assume that a significant reduction of H2O concentration in the annealing atmosphere might play an important role in suppressing surface roughening of SiC during high-temperature annealing.


Sign in / Sign up

Export Citation Format

Share Document