A Finite Element Model for Oven Aged Tires

2005 ◽  
Vol 33 (2) ◽  
pp. 103-119 ◽  
Author(s):  
K. R. J. Ellwood ◽  
J. Baldwin ◽  
D. R. Bauer

Abstract A finite element kinetic model has been developed to interpret issues related to accelerated aging of tires. The model is based on the Basic Autoxidation Scheme and incorporates mass transport limitations related to diffusion of oxygen into the layered elastomer system. The effect of aging on transport properties, such as diffusivity, due to changes in crosslink density is also considered in the model. The extent of oxidation is calculated at different locations within the tire as a function of time, temperature, and inflation media. The extent of oxidation predicted by the model is compared to experimentally derived data such as oxygen content, crosslink density, elongation-to-break, and modulus variation.

Author(s):  
Ehsan Foroozmehr ◽  
Radovan Kovacevic

A finite element model, coupled with a thermo-kinetic model is developed to simulate the heat transfer and microstructural evolution in laser deposition of a metal-matrix composite powder. The model is used to predict the final hardness and the effect of process parameters on a metal matrix. A defined area is covered by H13-WC powder with three different deposition patterns: one-section, two-section, and three-section. The one-section pattern is the normal deposition pattern in which the deposition area is covered with zigzag patterns and in one step. In the two- and three-section patterns, the deposition area is divided to two and three sections, respectively, and is covered in two and three steps. The finite element model is used to determine the temperature history of the process used in the kinetic model to analyze the tempering effect of the heating and cooling cycles of the deposition process on the composite matrix. The results show that dividing the area under deposition into smaller areas can influence the phase transformation kinetics of the process and, consequently, change the final hardness of the metal matrix. The two-section pattern shows a higher average hardness than the one-section pattern, and the three-section pattern shows a fully hardened surface without significant tempered zones with low hardness. The simulation results are in very good agreement with the experimental ones.


1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document