A Universal Approach to Tire Forces Estimation by Accelerometer-Based Intelligent Tire: Analytical Model and Experimental Validation

Author(s):  
Guanqun Liang ◽  
Yan Wang ◽  
Mario A. Garcia ◽  
Tong Zhao ◽  
Zhe Liu ◽  
...  

ABSTRACT Efforts to improve the performance and safety of vehicles include placing active sensing components (e.g., embedded microsensors) within tires result in intelligent tires. One application of intelligent tire is tire force estimation based on accelerometers. However, its development is limited due to the difficulty of relating the tire force to kinematical information by model-based theory. In this manuscript, a universal approach to tire forces estimation by the accelerometer-based intelligent tire is formulated and experimentally validated. First, a microelectromechanical system accelerometer-based intelligent tire prototype is established with the function of on-board monitoring of tire forces. Then, a theoretical rolling kinematics model is proposed for illustrating the mechanisms of acceleration fields, resulting from the coupling effect of rigid body motion and elastic deformation. An analytical model is formulated to estimate the vertical force in real time. Furthermore, the beam model is adopted to describe lateral deformations of the tire belt, directly linking lateral acceleration and lateral force. Finally, the lateral force can be estimated by lateral acceleration and vertical force already estimated. Based on a universal analytical model, the lateral force estimation method realizes high accuracy under different circumstances, even with unified coefficients, by clarifying and eliminating the influence of ply steer. A field test and two bench experiments have been conducted to fully validate the developed model. It can be concluded that the theoretical-analysis-based estimation model realizes an encouraging tire force estimation application with an intelligent tire hardware system.

2018 ◽  
Vol 30 (1) ◽  
pp. 138-144 ◽  
Author(s):  
Yuuki Shiozawa ◽  
◽  
Hiroshi Mouri

To control vehicle behavior, it is essential to estimate tire force accurately at all times. However, it is currently difficult to detect tire performance degradation before the deterioration of vehicle dynamics in real time because tire force estimation is usually conducted by comparing the observed vehicle motion with the onboard vehicle-model motion baseline reference. Such conventional estimators do not perform well if there is a significant difference between the vehicle and the model behavior. The lack of technology to easily predict tire forces and road surface friction is concerning. In this paper, a new tire state estimation method based on tire force characteristics is proposed.


Author(s):  
Valery Pylypchuk ◽  
Shih-Ken Chen ◽  
Nikolai Moshchuk

This paper provides a brief analytical overview of the existing methodologies for estimation of tire forces and proposes a new simple and effective methodology with sensor measurement such as elastic strains on different suspension parts. Although such an approach requires specific modeling and signal processing, it incorporates the wheel dynamics and avoids dealing with the rotating wheels. Validation using a 7DOF vehicle model and CarSim model showed good results comparing the estimated vertical tire forces and the actual tire forces obtained directly from the models. Initial vehicle tests point to the importance of sensor locations due to the complexity of 3D elastic strain fields near suspension mounts. Detailed finite element and experimental studies are required in order to optimize sensor positions, so any effects causing variations of such positions can be compensated by parameter adjustments based on specifically designed calibrating tests.


2001 ◽  
Vol 34 (1) ◽  
pp. 41-46 ◽  
Author(s):  
A. El Hadri ◽  
G. Beurier ◽  
J.C. Cadiou ◽  
N.K. M'Sirdi ◽  
Y. Delanne

2004 ◽  
Vol 126 (4) ◽  
pp. 753-763 ◽  
Author(s):  
Ossama Mokhiamar ◽  
Masato Abe

This paper presents a proposed optimum tire force distribution method in order to optimize tire usage and find out how the tires should share longitudinal and lateral forces to achieve a target vehicle response under the assumption that all four wheels can be independently steered, driven, and braked. The inputs to the optimization process are the driver’s commands (steering wheel angle, accelerator pedal pressure, and foot brake pressure), while the outputs are lateral and longitudinal forces on all four wheels. Lateral and longitudinal tire forces cannot be chosen arbitrarily, they have to satisfy certain specified equality constraints. The equality constraints are related to the required total longitudinal force, total lateral force, and total yaw moment. The total lateral force and total moment required are introduced using the model responses of side-slip angle and yaw rate while the total longitudinal force is computed according to driver’s command (traction or braking). A computer simulation of a closed-loop driver-vehicle system subjected to evasive lane change with braking is used to prove the significant effects of the proposed optimal tire force distribution method on improving the limit handling performance. The robustness of the vehicle motion with the proposed control against the coefficient of friction variation as well as the effect of steering wheel angle amplitude is discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jun Yang ◽  
Wuwei Chen ◽  
Yan Wang

This paper demonstrates the implementation of a model-based vehicle estimator, which can be used for lateral tire force estimation without using any highly nonlinear tire-road friction models. The lateral tire force estimation scheme has been designed, and it consists of the following three steps: the yaw moment estimation based on a disturbance observer, the sum of the lateral tire force of two front tires and two rear tires estimation based on a least-square method, and individual lateral tire force estimation based on a heuristic method. The proposed estimator is evaluated under two typical driving conditions and the estimation values are compared with simulator data from CarSim and experimental data provided by GM. Results to date indicate that this is an effective approach, which is considered to be of potential benefit to the automotive industry.


Sign in / Sign up

Export Citation Format

Share Document