Automated laser systems for high volume production sheet metal application

Author(s):  
U. Betz ◽  
M. Retzbach ◽  
G. Alber ◽  
W. Prange ◽  
N. M. Uddin ◽  
...  
2013 ◽  
Vol 549 ◽  
pp. 189-196
Author(s):  
Andreas Nick ◽  
Joachim Zettler ◽  
Gerhard Hirt

Superplastic forming (SPF) is a well-known and widely used sheet metal forming process especially useful for the production of very complex and light thin sheet metal components. The superplastic behavior of a material is highly dependent on the temperature and occurs only at a narrow range of strain rates with an optimum value that is unique for each material. Within the aeronautic industry, this process is mainly used to form complex sheet metal parts made of the titanium alloy Ti6Al4V in heat affected areas and areas where corrosion resistance plays an important role. Even though the process times of SPF are often in the range of hours and therefore recurring costs are very high, the process is sometimes still the only choice when it comes to the forming of Ti6Al4V sheet metal parts for aeronautic or aerospace applications. To overcome the problem of long process times and high costs, in recent years, a lot of research did happen with the goal of temperature reduction during forming or forming at higher strain rates. Especially the change in the aeronautic industry towards high volume production is increasing the competition between suitable forming technologies and the SPF technology can only persist if both goals, reduction of process time and recurring costs are reachable. In this paper we will address those goals and show highly useful numerical procedures to make the SPF process ready for the next generation of aerospace manufacturing.


2014 ◽  
Vol 941-944 ◽  
pp. 1827-1831
Author(s):  
Qian Liu ◽  
Jing Tao Han ◽  
Jing Liu ◽  
Xiao Xiong Wang

Metal blanking is a widely used process in high volume production of sheet metal components. The main objective of this paper is to provide an overview of the state of the several blanking processes including conventional blanking, fineblanking and rotary blanking from both experimental research and finite element analysis. This paper also includes the blanking mechanicals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jort Hammer ◽  
Hidenori Matsukami ◽  
Satoshi Endo

AbstractChlorinated Paraffins (CPs) are high volume production chemicals and have been found in various organisms including humans and in environmental samples from remote regions. It is thus of great importance to understand the physical–chemical properties of CPs. In this study, gas chromatographic (GC) retention indexes (RIs) of 25 CP congeners were measured on various polar and nonpolar columns to investigate the relationships between the molecular structure and the partition properties. Retention measurements show that analytical standards of individual CPs often contain several stereoisomers. RI values show that chlorination pattern have a large influence on the polarity of CPs. Single Cl substitutions (–CHCl–, –CH2Cl) generally increase polarity of CPs. However, many consecutive –CHCl– units (e.g., 1,2,3,4,5,6-C11Cl6) increase polarity less than expected from the total number of –CHCl– units. Polyparameter linear free energy relationship descriptors show that polarity difference between CP congeners can be explained by the H-bond donating properties of CPs. RI values of CP congeners were predicted using the quantum chemically based prediction tool COSMOthermX. Predicted RI values correlate well with the experimental data (R2, 0.975–0.995), indicating that COSMOthermX can be used to accurately predict the retention of CP congeners on GC columns.


1986 ◽  
Vol 67 ◽  
Author(s):  
Chris R. Ito ◽  
M. Feng ◽  
V. K. Eu ◽  
H. B. Kim

ABSTRACTA high-volume epitaxial reactor has been used to investigate the feasibility for the production growth of GaAs on silicon substrates. The reactor is a customized system which has a maximum capacity of 39 three-inch diameter wafers and can accommodate substrates as large as eight inches in diameter. The MOCVD material growth technique was used to grow GaAs directly on p-type, (100) silicon substrates, three and five inches in diameter. The GaAs surfaces were textured with antiphase boundaries. Double-cyrstal rocking curve measurements showed single-cyrstal GaAs with an average FWHMof 520 arc seconds measured at four points over the wafer surface. Within-wafer thickness uniformity was ± 4% with a wafer-to-wafer uniformity of ± 2%. Photoluminescence spectra showed Tour peaks at 1.500, 1.483, 1.464, and 1.440 ev. Schottky diodes were fabricated on the GaAs on silicon material.


2017 ◽  
Vol 52 (3) ◽  
pp. 395-404
Author(s):  
Xiuqi Lyu ◽  
Jun Takahashi ◽  
Yi Wan ◽  
Isamu Ohsawa

Chopped carbon fiber tape-reinforced thermoplastic material is specifically developed for the high-volume production of lightweight automobiles. With excellent design processability and flexibility, the carbon fiber tape-reinforced thermoplastic material is manufactured by compressing large amounts of randomly oriented, pre-impregnated unidirectional tapes in a plane. Therefore, the carbon fiber tape-reinforced thermoplastic material presents transversely isotropic properties. Transverse shear effect along the thickness direction of carbon fiber tape-reinforced thermoplastic beam has a distinct influence on its flexural deformation. Accordingly, the Timoshenko beam theory combined with vibration frequencies was proposed to determine the set of transverse flexural and shear moduli. Meanwhile, the transverse flexural and shear moduli of carbon fiber tape-reinforced thermoplastic beam were finally determined by fitting all the first seven measured and calculated eigenfrequencies with the least squares criterion. In addition, the suggested thickness to length ratio for the 3-point bending test and Euler–Bernoulli model was given.


Sign in / Sign up

Export Citation Format

Share Document