Elaboration and characterization of MoSi2 laser cladding with addition of non-stabilized ZrO2 powder particles

Author(s):  
S. Ignat ◽  
P. Sallamand ◽  
A. Nichici ◽  
A. B. Vannes ◽  
D. Grevey ◽  
...  
2003 ◽  
Vol 11 (9) ◽  
pp. 931-938 ◽  
Author(s):  
Sorin Ignat ◽  
Pierre Sallamand ◽  
Alexandru Nichici ◽  
Bernard Vannes ◽  
Dominique Grevey ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2225
Author(s):  
Aleksandra Kotarska ◽  
Tomasz Poloczek ◽  
Damian Janicki

The article presents research in the field of laser cladding of metal-matrix composite (MMC) coatings. Nickel-based superalloys show attractive properties including high tensile strength, fatigue resistance, high-temperature corrosion resistance and toughness, which makes them widely used in the industry. Due to the insufficient wear resistance of nickel-based superalloys, many scientists are investigating the possibility of producing nickel-based superalloys matrix composites. For this study, the powder mixtures of Inconel 625 superalloy with 10, 20 and 40 vol.% of TiC particles were used to produce MMC coatings by laser cladding. The titanium carbides were chosen as reinforcing material due to high thermal stability and hardness. The multi-run coatings were tested using penetrant testing, macroscopic and microscopic observations, microhardness measurements and solid particle erosive test according to ASTM G76-04 standard. The TiC particles partially dissolved in the structure during the laser cladding process, which resulted in titanium and carbon enrichment of the matrix and the occurrence of precipitates formation in the structure. The process parameters and coatings chemical composition variation had an influence on coatings average hardness and erosion rates.


Author(s):  
Felipe Amélio de Lucena ◽  
Guilherme Yuuki Koga ◽  
Rudimar Riva ◽  
Conrado Ramos Moreira Afonso

2010 ◽  
Vol 16 (2) ◽  
pp. 169-178 ◽  
Author(s):  
G. Osthoff ◽  
A. Hugo ◽  
P. van Wyk ◽  
M. de Wit ◽  
S. Meyer

Physical characterization of a soymilk powder was carried out by electron microscopy. Chemical characterization was analyzed by proximate analysis, mineral composition by atomic absorption spectrometry, fatty acid composition by gas chromatography and protein composition by electrophoresis. The powder consists of large granules of 60—80 μm, which may be hollow, with smaller granules of 10—20 μm attached to them. Powder particles are covered by a layer of fat. During storage at 25 °C fat is spreading over the surface, while at —12 °C the fat is contracting. This change affected chemical stability, resulting in high level of fat oxidation when stored at 4 °C or 25 °C as well as a decrease in unsaturated fatty acids. Storage also affected the chemical properties of the re-constituted soymilk; the pH of a 12% soy powder suspension increased from 6.68±0.05 to 7.06±0.08 after 12 months of storage. Storage temperature did not affect the pH of the suspension and this change could also not be ascribed to protein aggregation.


Sign in / Sign up

Export Citation Format

Share Document