scholarly journals Characterization of the Structure, Mechanical Properties and Erosive Resistance of the Laser Cladded Inconel 625-Based Coatings Reinforced by TiC Particles

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2225
Author(s):  
Aleksandra Kotarska ◽  
Tomasz Poloczek ◽  
Damian Janicki

The article presents research in the field of laser cladding of metal-matrix composite (MMC) coatings. Nickel-based superalloys show attractive properties including high tensile strength, fatigue resistance, high-temperature corrosion resistance and toughness, which makes them widely used in the industry. Due to the insufficient wear resistance of nickel-based superalloys, many scientists are investigating the possibility of producing nickel-based superalloys matrix composites. For this study, the powder mixtures of Inconel 625 superalloy with 10, 20 and 40 vol.% of TiC particles were used to produce MMC coatings by laser cladding. The titanium carbides were chosen as reinforcing material due to high thermal stability and hardness. The multi-run coatings were tested using penetrant testing, macroscopic and microscopic observations, microhardness measurements and solid particle erosive test according to ASTM G76-04 standard. The TiC particles partially dissolved in the structure during the laser cladding process, which resulted in titanium and carbon enrichment of the matrix and the occurrence of precipitates formation in the structure. The process parameters and coatings chemical composition variation had an influence on coatings average hardness and erosion rates.

2021 ◽  
Vol 30 (1) ◽  
pp. 199-206
Author(s):  
Anjan Kumar B. Hanumantharayappa ◽  
Chaithra Prasanna ◽  
Chethana C. Ragavendra ◽  
Chandrasekhar Singh Beekam ◽  
Latha Shankar Boluvar ◽  
...  

Abstract The present research reports improvement in mechanical performance of Copper-Tin(Cu-Sn) composites due to the addition of hard Si3N4 particles as reinforcement. Two-step stir casting technique was adopted to prepare Si3N4-reinforced Cu-Sn based composites. The uniform distribution of the reinforcement in the matrix was ensured by SEM morphology and energy-dispersive X-ray (EDAX) spectrum of the developed composites. Brinell hardness test and tension test were used to estimate the hardness and tensile strength of the composite. Si3N4 reinforcing materials added to the extent of 7.5% by wt. to Cu-Sn matrix enhanced hardness by 41% and UTS by 33%, YS by 29% and showed 23% decrement in ductility. Thus a comparison of Si3N4-reinforced Cu-Sn based composites with base metal has shown that considerable improvement in tensile properties such as UTS and YS and hardness if reinforcing material is added to the extent of 7.5%.


2019 ◽  
Vol 8 (1) ◽  
pp. 1102-1110 ◽  
Author(s):  
Ashraf Bakkar ◽  
Mohamed M.Z. Ahmed ◽  
Naser A. Alsaleh ◽  
Mohamed M. El-Sayed Seleman ◽  
Sabbah Ataya

2014 ◽  
Vol 5 ◽  
pp. 772-779 ◽  
Author(s):  
N.H. Sateesh ◽  
G.C. Mohan Kumar ◽  
Krishna Prasad ◽  
Srinivasa C.K. ◽  
A.R. Vinod

2017 ◽  
Vol 25 (3) ◽  
pp. 209-214 ◽  
Author(s):  
G. Venkatachalam ◽  
A. Kumaravel

This paper presents the characterization of A356 composite reinforced with fly ash and basalt ash produced by stir casting method. Aluminium metal matrix composites (AMC) are used in wide variety of applications such as structural, aerospace, marine, automotive etc. Stir casting is cost effective manufacturing process and it is useful to enhance the attractive properties of AMCs. Three sets of hybrid AMC are prepared by varying the weight fraction of the reinforcements (3% basalt + 7% fly ash, 5% basalt + 5% fly, 7% basalt + 3% fly ash). The effect of reinforcements on the mechanical properties of the hybrid composites such as hardness, tensile, compressive and impact strength were studied. The obtained results reveal that tensile, compressive and impact strength was increased when weight fraction of fly ash increased, whereas the hardness increases when weight fraction of the basalt ash increased. Microscopic study reveals the dispersion of the reinforcements in the matrix.


2012 ◽  
Vol 472-475 ◽  
pp. 313-316 ◽  
Author(s):  
Chun Hua Zhang ◽  
Yu Xi Hao ◽  
Lin Qi ◽  
Fang Hu ◽  
Song Zhang ◽  
...  

Abstract. The paper presents the results of a study concerned with the surface hardening of Inconel 625 alloys and Ni-base alloy powder on Monel alloy by electro spark deposition and laser cladding processes. The microstructure, the phase composition and the microhardness of samples are investigated by SEM, EDS, XRD and microhardness instrument. It is shown that, the matrix phase is mainly made up of dendritic structure (γ-Ni), interdendritic eutectic phase (Ni3(B,Fe,Si)) and some precipitates (Cr7C3, Cr23C6). Additional, the microhardness of laser cladding layer can be substantially increased, duo to formation of precipitates.


2015 ◽  
Vol 825-826 ◽  
pp. 899-906 ◽  
Author(s):  
Ralf Eckner ◽  
Alexander Illgen ◽  
Markus Radajewski ◽  
Lutz Krüger

Ceramic particle reinforced metal matrix composites (PRMMCs) combine the strength and brittleness of ceramics with the toughness of a metallic matrix. In order to use these materials in construction and operational design their fracture mechanical behavior must be evaluated. In this study, a 30 vol.-% Al2O3 reinforced austenitic TRIP steel processed by powder metallurgical technique was investigated using precracked miniature SENB-specimens in 3-point-bending. An elastic-plastic analysis by means of the J-integral method in combination with optical crack observation showed the materials ability of stable crack growth, i. e. R-curve behavior. In addition to the mechanical tests microstructural studies were performed, whereby particle debonding and fracture as well as martensitic phase transformation and crack bridging within the matrix were identified as fracture energy dissipating mechanisms.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2596
Author(s):  
Aida B. Moreira ◽  
Laura M. M. Ribeiro ◽  
Pedro Lacerda ◽  
Ricardo O. Sousa ◽  
Ana M. P. Pinto ◽  
...  

High-chromium white cast iron (WCI) specimens locally reinforced with WC–metal matrix composites were produced via an ex situ technique: powder mixtures of WC and Fe cold-pressed in a pre-form were inserted in the mold cavity before pouring the base metal. The microstructure of the resulting reinforcement is a matrix of martensite (α’) and austenite (γ) with WC particles evenly distributed and (Fe,W,Cr)6C carbides that are formed from the reaction between the molten metal and the inserted pre-form. The (Fe,W,Cr)6C precipitation leads to the hypoeutectic solidification of the matrix and the final microstructure consists of martensite, formed from primary austenite during cooling and eutectic constituent with (Fe,Cr)7C3 and (Fe,W,Cr)6C carbides. The presence of a reaction zone with 200 µm of thickness, between the base metal and the composite should guarantee a strong bonding between these two zones.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 673
Author(s):  
Ainhoa Riquelme ◽  
Pilar Rodrigo ◽  
María Dolores Escalera-Rodríguez ◽  
Joaquín Rams

Aluminum matrix composites reinforced with silicon carbide particles (SiCp) were deposited by laser cladding on AA6082 aluminum alloy. Different compositions of the matrix of the composites coating were used and different amounts of Si and Ti were added to a base of Al-12Si in order to control the reactivity between molten aluminum and SiCp during laser cladding. The corrosion behavior of the coatings deposited was evaluated in 3.5 wt.% NaCl solution using gravimetric analyses and electrochemical polarization tests. The corrosion products observed were Al(OH)3 and Al2O3, and they formed a layer that limited the evolution of corrosion. However, the presence of discontinuities in it reduced the corrosion resistance of the coating. The corrosion mechanisms were different depending on the coating composition. The addiction of Ti to the alloy allowed for better corrosion behavior for the composite coating than that of the aluminum substrate.


2013 ◽  
Vol 1517 ◽  
Author(s):  
Xiaorui Wang ◽  
Sergio Scudino ◽  
Jürgen Eckert

ABSTRACTIn this work, composites consisting of the Al 2024 matrix reinforced with β-Al3Mg2 particles have been produced by powder metallurgy with the aim of increasing the strength of the matrix and, at the same time, reducing the density of the material. The β-Al3Mg2 phase represents an ideal candidate as reinforcement in lightweight composites due to its low density and high-temperature strength. The β-Al3Mg2 reinforcement remarkably improves the mechanical properties of the 2024 matrix. In particular, the composite with 20 vol.% reinforcement display yield and compressive strengths exceeding that of the unreinforced matrix by about 120 and 180 MPa, while retaining appreciable plastic deformation of about 30 %. The strength of the material is further increased for the samples with 30 and 40 vol.% of β-Al3Mg2 phase, however, the composites show reduced plastic deformation of 11 and 4.5 %. Furthermore, the addition of the low-density β-Al3Mg2 particles decreases the density of the materials below that of the unreinforced 2024 matrix, considerably increasing the specific strength of the composites.


Sign in / Sign up

Export Citation Format

Share Document