Development of a high-speed laser material deposition process for additive manufacturing

2021 ◽  
Vol 33 (1) ◽  
pp. 012021
Author(s):  
Jonathan Schaible ◽  
Lennart Sayk ◽  
Thomas Schopphoven ◽  
Johannes Henrich Schleifenbaum ◽  
Constantin Häfner
2021 ◽  
Author(s):  
Rebar Hama-Saleh ◽  
Kerim Yildirim ◽  
Susanne Hemes ◽  
Andreas Weisheit ◽  
Constantin Leon Häfner

Ti-6Al-4V is the most prominent titanium alloy widely used e.g. for aerospace applications. Conventionally, many Ti-6Al-4V aerospace components are produced by a multi-stage hot forging process followed by subsequent machining which often generates a high amount of scrap. Additive manufacturing (AM), such as powder-based laser material deposition (p-LMD), enables parts to be made with geometric freedom and near-net-shape, but so far lacks high deposition rates. The present study proposes high-deposition-rate laser material deposition manufacturing using a large laser beam diameter and increased scanning speed to achieve deposition rates up to 5 kg/h. As Ti-6Al-4V is prone to oxygen pick-up, the process was performed in an inert atmosphere. We determined suitable process windows for tracks without fusion defects and low porosity and investigated microstructure and hardness.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 811 ◽  
Author(s):  
Jørgen Blindheim ◽  
Torgeir Welo ◽  
Martin Steinert

Hybrid Metal Extrusion & Bonding Additive Manufacturing (HYB-AM) is a hybrid manufacturing technology for the deposition of layered metal structures. This new deposition process is a complex metal forming operation, yet there is significant lack of knowledge regarding the governing mechanisms. In this work, we have used finite element analysis (FEA) to study material flow in the extruder, as well as the conditions at the interfaces of the deposited extrudate and the substrate, aiming to identify and characterize the process parameters involved. Analysis of the material flow shows that the extrusion pressure is virtually independent of the deposition rate. Furthermore, from the simulations of the material deposition sequence, it is clearly visible how the contact pressure at the interface will drop below the bonding threshold if the feed speed is too high relative to the material flow through the die. The reduced pressure also leads to the formation of a ‘gas-pocket’ inside the die, thus further degrading the conditions for bonding. The analyses of the process have provided valuable insights for the further development and industrialization of the process.


2013 ◽  
Vol 70 (5-8) ◽  
pp. 843-851 ◽  
Author(s):  
I. Tabernero ◽  
A. Lamikiz ◽  
E. Ukar ◽  
S. Martínez ◽  
A. Celaya

Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 778 ◽  
Author(s):  
Tianci Li ◽  
Lele Zhang ◽  
Gregor Gilles Pierre Bultel ◽  
Thomas Schopphoven ◽  
Andres Gasser ◽  
...  

A variant of conventional laser material deposition (LMD), extreme high-speed laser material deposition (German acronym: EHLA) is characterized by elevated process speeds of up to 200 m/min, increased cooling rates, and a significantly reduced heat affected zone. This study focuses on the feasibility of using EHLA to apply material onto Fe-based substrate materials with AISI 4340 as a filler material. We studied how three different build-up strategies—consisting of one, three, and five consecutive deposited layers and hence, different thermal evolutions of the build-up volume—influence the metallurgical characteristics such as microstructure, porosity, hardness, and static mechanical properties. We propose a thermo-metallurgical scheme to help understand the effects of the build-up strategy and the thermal evolution on the microstructure and hardness. The tensile strength of the build-up volume was determined and is higher than the ones of forged AISI 4340 material.


2017 ◽  
Vol 14 (4) ◽  
pp. 26-29 ◽  
Author(s):  
Thomas Schopphoven ◽  
Andres Gasser ◽  
Gerhard Backes

Author(s):  
Anirudh Krishnakumar ◽  
Krishnan Suresh ◽  
Aaditya Chandrasekar

There is significant interest today in the finite element simulation of various Additive Manufacturing (AM) processes. AM simulation is time-dependent, inherently non-linear, and involves multiple physics. In addition, repeated meshing and insertion of new elements during material deposition can pose significant implementation challenges. Currently, AM simulation is handled either through a ‘quiet’ approach or an ‘inactive’ approach. In the quiet approach, all finite elements within the workspace are assembled into the global stiffness matrix, and the elements yet to be deposited are assigned ‘void’ material properties. In the inactive approach, only the elements that have been deposited are assembled into the global stiffness matrix. The advantages and disadvantages of the two methods are well documented. In this paper, we propose a voxel-based, assembly-free framework for AM simulation. This framework presents several advantages including. (1) The workspace is meshed only once at the start of the simulation, (2) addition and deletion of elements is trivial, (3) reduced memory requirement as the global stiffness matrix is never assembled and (4) the underlying linear systems of equations can be solved efficiently through assembly-free methods. We demonstrate the framework here by simulating transient non-linear thermal behaviour of a laser deposition process, with material deposition.


2016 ◽  
Vol 83 ◽  
pp. 743-751 ◽  
Author(s):  
Jon Iñaki Arrizubieta ◽  
Maximiliam Wegener ◽  
Kristian Arntz ◽  
Aitzol Lamikiz ◽  
Jose Exequiel Ruiz

2017 ◽  
Vol 14 (3) ◽  
pp. 45-45 ◽  
Author(s):  
Thomas Schopphoven ◽  
Andres Gasser ◽  
Gerhard Backes

Sign in / Sign up

Export Citation Format

Share Document