Detection of Air-to-Air Flying Targets against Sky–ground Joint Background

Author(s):  
Junhua Yan ◽  
Kun Zhang ◽  
Yin Zhang ◽  
Xuyang Cai ◽  
Jingchun Qi ◽  
...  

There are three critical problems that need to be tackled in target detection when both the target and the photodetector platform are in flight. First, the background is a sky–ground joint background. Second, the background motion is slow when detecting targets from a long distance, and the targets are small, lacking shape information as well as large in number. Third, when approaching the target, the photodetector platform follows the target in violent movements and the background moves fast. This article is comprised of three parts. The first part is the sky–ground joint background separation algorithm, which extracts the boundary between the sky background and the ground background based on their different characteristics. The second part is the algorithm for the detection of small flying targets against the slow moving background (DSFT-SMB), where the double Gaussian background model is used to extract the target pixel points, then the missed targets are supplemented by correlating target trajectories, and the false alarm targets are filtered out using trajectory features. The third part is the algorithm for the detection of flying targets against the fast moving background (DFT-FMB), where the spectral residual model of target is used to extract the target pixel points for the target feature point optical flow, then the speed of target feature point optical flow is calculated in the sky background and the ground background respectively, thereby targets are detected using the density clustering algorithm. Experimental results show that the proposed algorithms exhibit excellent detection performance, with the recall rate higher than 94%, the precision rate higher than 84%, and the F-measure higher than 89% in the DSFT-SMB, and the recall rate higher than 77%, the precision rate higher than 55%, and the F-measure higher than 65% in the DFT-FMB.

Author(s):  
Andi Pratomo Wiyono ◽  
Muhammad Aziz Muslim ◽  
Muhammad Aswin

Employees are an important element in a company that determines the progress of a company. With good quality employees in a company, it is easier to achieve desired goals of a company. Conventional (manual) recruitment method is vulnerable to non-technical factors such as frequent duplicate data or invalid data. In such condition, a Decision Support System (DSS) will be helpful in making decision process valid and reliable. In this paper, a Simple Addictive Weighting (SAW) method and Profile Matching were proposed to solve employee selection problem. This research was conducted at UPT Career Development and Entrepreneurship Universitas Brawijaya Malang, using data collected from written test selection in 2019. The effectiveness of both methods is analyzed by means of confusion matrix. SAW method give Accuracy rate of 94.7%, Precision rate of 87.5%, Recall rate of 91.3% and F-measure rate of 89.4%. On the other hand, Profile Matching method obtained the Accuracy rate of 90.4.7%, Precision rate of 81.4%, Recall rate of 81.4% and F-measure rate of 81.4%. From these results, it can be concluded that both methods have a high accuracy value accompanied by a high precision value when used for the selection process. This system can also reduce the bias of the same data very well, as can be seen from the high Recall and F-measure rates.


2018 ◽  
Vol 14 (3) ◽  
pp. 69-89 ◽  
Author(s):  
Caiquan Xiong ◽  
Xuan Li ◽  
Yuan Li ◽  
Gang Liu

In an Online Argumentation Platform, a great deal of speech messages are produced. To find similar speech texts and extract their common summary is of great significance for improving the efficiency of argumentation and promoting consensus building. In this article, a method of speech text analysis is proposed. Firstly, a heuristic clustering algorithm is used to cluster the speech texts and obtain similar text sets. Then, an improved TextRank algorithm is used to extract a multi-document summary, and the results of the summary are fed back to experts (i.e. participants). The method of multi-document summarization is based on TextRank, which takes into account the position of sentences in paragraphs, the weight of the key sentence, and the length of the sentence. Finally, a prototype system is developed to verify the validity of the method using the four evaluation parameters of recall rate, accuracy rate, F-measure, and user feedback. The experimental results show that the method has a good performance in the system.


2020 ◽  
Vol 15 ◽  
pp. 155892502097832
Author(s):  
Jiaqin Zhang ◽  
Jingan Wang ◽  
Le Xing ◽  
Hui’e Liang

As the precious cultural heritage of the Chinese nation, traditional costumes are in urgent need of scientific research and protection. In particular, there are scanty studies on costume silhouettes, due to the reasons of the need for cultural relic protection, and the strong subjectivity of manual measurement, which limit the accuracy of quantitative research. This paper presents an automatic measurement method for traditional Chinese costume dimensions based on fuzzy C-means clustering and silhouette feature point location. The method is consisted of six steps: (1) costume image acquisition; (2) costume image preprocessing; (3) color space transformation; (4) object clustering segmentation; (5) costume silhouette feature point location; and (6) costume measurement. First, the relative total variation model was used to obtain the environmental robustness and costume color adaptability. Second, the FCM clustering algorithm was used to implement image segmentation to extract the outer silhouette of the costume. Finally, automatic measurement of costume silhouette was achieved by locating its feature points. The experimental results demonstrated that the proposed method could effectively segment the outer silhouette of a costume image and locate the feature points of the silhouette. The measurement accuracy could meet the requirements of industrial application, thus providing the dual value of costume culture research and industrial application.


2014 ◽  
Vol 24 (07) ◽  
pp. 1450023 ◽  
Author(s):  
LUNG-CHANG LIN ◽  
CHEN-SEN OUYANG ◽  
CHING-TAI CHIANG ◽  
REI-CHENG YANG ◽  
RONG-CHING WU ◽  
...  

Refractory epilepsy often has deleterious effects on an individual's health and quality of life. Early identification of patients whose seizures are refractory to antiepileptic drugs is important in considering the use of alternative treatments. Although idiopathic epilepsy is regarded as having a significantly lower risk factor of developing refractory epilepsy, still a subset of patients with idiopathic epilepsy might be refractory to medical treatment. In this study, we developed an effective method to predict the refractoriness of idiopathic epilepsy. Sixteen EEG segments from 12 well-controlled patients and 14 EEG segments from 11 refractory patients were analyzed at the time of first EEG recordings before antiepileptic drug treatment. Ten crucial EEG feature descriptors were selected for classification. Three of 10 were related to decorrelation time, and four of 10 were related to relative power of delta/gamma. There were significantly higher values in these seven feature descriptors in the well-controlled group as compared to the refractory group. On the contrary, the remaining three feature descriptors related to spectral edge frequency, kurtosis, and energy of wavelet coefficients demonstrated significantly lower values in the well-controlled group as compared to the refractory group. The analyses yielded a weighted precision rate of 94.2%, and a 93.3% recall rate. Therefore, the developed method is a useful tool in identifying the possibility of developing refractory epilepsy in patients with idiopathic epilepsy.


2021 ◽  
Author(s):  
Yishan He ◽  
Jiajin Huang ◽  
Gaowei Wu ◽  
Jian Yang

Abstract The digital reconstruction of a neuron is the most direct and effective way to investigate its morphology. Many automatic neuron tracing methods have been proposed, but without manual check it is difficult to know whether a reconstruction or which substructure in a reconstruction is accurate. For a neuron’s reconstructions generated by multiple automatic tracing methods with different principles or models, their common substructures are highly reliable and named individual motifs. In this work, we propose a Vaa3D based method called Lamotif to explore individual motifs in automatic reconstructions of a neuron. Lamotif utilizes the local alignment algorithm in BlastNeuron to extract local alignment pairs between a specified objective reconstruction and multiple reference reconstructions, and combines these pairs to generate individual motifs on the objective reconstruction. The proposed Lamotif is evaluated on reconstructions of 163 multiple species neurons, which are generated by four state-of-the-art tracing methods. Experimental results show that individual motifs are almost on corresponding gold standard reconstructions and have much higher precision rate than objective reconstructions themselves. Furthermore, an objective reconstruction is mostly quite accurate if its individual motifs have high recall rate. Individual motifs contain common geometry substructures in multiple reconstructions, and can be used to select some accurate substructures from a reconstruction or some accurate reconstructions from automatic reconstruction dataset of different neurons.


Author(s):  
Parminder Kaur ◽  
Prabhpreet Kaur ◽  
Gurvinder Singh

Acquisition of the standard plane is the prerequisite of biometric measurement and diagnosis during the ultrasound (US) examination. Based upon the analysis of existing algorithms for the automatic fetal development measurement, a new algorithm known as neuro-fuzzy based on genetic algorithm is developed. Firstly, the fetal ultrasound benchmark image is auto-pre-processed using normal shrink homomorphic technique. Secondly, the features are extracted using gray level co-occurrence matrix (GLCM), grey level run length matrix (GLRLM), intensity histogram (IH), and rotation invariant moments (IM). Thirdly, neuro-fuzzy using genetic approach is used to distinguish among the fetus growth as abnormal or normal. Experimental results using benchmark and live dataset demonstrate that the developed method achieves an accuracy of 97% as compared to the state-of-the-art methods in terms of parameters such as sensitivity, specificity, recall, f-measure, and precision rate.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1103
Author(s):  
Yue Song ◽  
Minjuan Wang ◽  
Wanlin Gao

In order to improve the retrieval results of digital agricultural text information and improve the efficiency of retrieval, the method for searching digital agricultural text information based on local matching is proposed. The agricultural text tree and the query tree are constructed to generate the relationship of ancestor–descendant in the query and map it to the agricultural text. According to the retrieval method of the local matching, the vector retrieval method is used to calculate the digital agricultural text and submit the similarity between the queries. The similarity is sorted from large to small so that the agricultural text tree can output digital agricultural text information in turn. In the case of adding interference information, the recall rate and precision rate of the proposed method are above 99.5%; the average retrieval time is between 4s and 6s, and the average retrieval efficiency is above 99%. The proposed method is more efficient in information retrieval and can obtain comprehensive and accurate search results, which can be used for the rapid retrieval of digital agricultural text information.


Author(s):  
Amolkumar Narayan Jadhav ◽  
Gomathi N.

The widespread application of clustering in various fields leads to the discovery of different clustering techniques in order to partition multidimensional data into separable clusters. Although there are various clustering approaches used in literature, optimized clustering techniques with multi-objective consideration are rare. This paper proposes a novel data clustering algorithm, Enhanced Kernel-based Exponential Grey Wolf Optimization (EKEGWO), handling two objectives. EKEGWO, which is the extension of KEGWO, adopts weight exponential functions to improve the searching process of clustering. Moreover, the fitness function of the algorithm includes intra-cluster distance and the inter-cluster distance as an objective to provide an optimum selection of cluster centroids. The performance of the proposed technique is evaluated by comparing with the existing approaches PSC, mPSC, GWO, and EGWO for two datasets: banknote authentication and iris. Four metrics, Mean Square Error (MSE), F-measure, rand and jaccord coefficient, estimates the clustering efficiency of the algorithm. The proposed EKEGWO algorithm can attain an MSE of 837, F-measure of 0.9657, rand coefficient of 0.8472, jaccord coefficient of 0.7812, for the banknote dataset.


2020 ◽  
Vol 9 (3) ◽  
pp. 181
Author(s):  
Banqiao Chen ◽  
Chibiao Ding ◽  
Wenjuan Ren ◽  
Guangluan Xu

The requirements of location-based services have generated an increasing need for up-to-date digital road maps. However, traditional methods are expensive and time-consuming, requiring many skilled operators. The feasibility of using massive GPS trajectory data provides a cheap and quick means for generating and updating road maps. The detection of road intersections, being the critical component of a road map, is a key problem in map generation. Unfortunately, low sampling rates and high disparities are ubiquitous among floating car data (FCD), making road intersection detection from such GPS trajectories very challenging. In this paper, we extend a point clustering-based road intersection detection framework to include a post-classification course, which utilizes the geometric features of road intersections. First, we propose a novel turn-point position compensation algorithm, in order to improve the concentration of selected turn-points under low sampling rates. The initial detection results given by the clustering algorithm are recall-focused. Then, we rule out false detections in an extended classification course based on an image thinning algorithm. The detection results of the proposed method are quantitatively evaluated by matching with intersections from OpenStreetMap using a variety of distance thresholds. Compared with other methods, our approach can achieve a much higher recall rate and better overall performance, thereby better supporting map generation and other similar applications.


2021 ◽  
Vol 29 (1) ◽  
pp. 75-89
Author(s):  
Quang-Thinh Bui ◽  
Bay Vo ◽  
Vaclav Snasel ◽  
Witold Pedrycz ◽  
Tzung-Pei Hong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document