Neurocomputational Lightness Model Explains the Appearance of Real Surfaces Viewed Under Gelb Illumination

2020 ◽  
Vol 3 (1) ◽  
pp. 10502-1-10502-16
Author(s):  
Michael E. Rudd

Abstract One of the primary functions of visual perception is to represent, estimate, and evaluate the properties of material surfaces in the visual environment. One such property is surface color, which can convey important information about ecologically relevant object characteristics such as the ripeness of fruit and the emotional reactions of humans in social interactions. This paper further develops and applies a neural model (Rudd, 2013, 2017) of how the human visual system represents the light/dark dimension of color—known as lightness—and computes the colors of achromatic material surfaces in real-world spatial contexts. Quantitative lightness judgments conducted with real surfaces viewed under Gelb (i.e., spotlight) illumination are analyzed and simulated using the model. According to the model, luminance ratios form the inputs to ON- and OFF-cells, which encode local luminance increments and decrements, respectively. The response properties of these cells are here characterized by physiologically motivated equations in which different parameters are assumed for the two cell types. Under non-saturating conditions, ON-cells respond in proportion to a compressive power law of the local incremental luminance in the image that causes them to respond, while OFF-cells respond linearly to local decremental luminance. ON- and OFF-cell responses to edges are log-transformed at a later stage of neural processing and then integrated across space to compute lightness via an edge integration process that can be viewed as a neurally elaborated version of Land’s retinex model (Land & McCann, 1971). It follows from the model assumptions that the perceptual weights—interpreted as neural gain factors—that the model observer applies to steps in log luminance at edges in the edge integration process are determined by the product of a polarity-dependent factor 1—by which incremental steps in log luminance (i.e., edges) are weighted by the value <1.0 and decremental steps are weighted by 1.0—and a distance-dependent factor 2, whose edge weightings are estimated to fit perceptual data. The model accounts quantitatively (to within experimental error) for the following: lightness constancy failures observed when the illumination level on a simultaneous contrast display is changed (Zavagno, Daneyko, & Liu, 2018); the degree of dynamic range compression in the staircase-Gelb paradigm (Cataliotti & Gilchrist, 1995; Zavagno, Annan, & Caputo, 2004); partial releases from compression that occur when the staircase-Gelb papers are reordered (Zavagno, Annan, & Caputo, 2004); and the larger compression release that occurs when the display is surrounded by a white border (Gilchrist & Cataliotti, 1994).

Author(s):  
Torsten Lehmann ◽  
André van Schaik

The chapter Implantable hearing interfaces describes the fundamental operation of a commonly available biohybrid system, the cochlear implant, or bionic ear. This neuro-stimulating biomedical implant is very successful in restoring hearing function to people with profound hearing loss. The fundamental operation of the biological cochlea is described and parallels are drawn between key aspects of the biological system and the biohybrid implementation: dynamic range compression, translation of sound to neural activity, and tonotopic mapping. Critical considerations are discussed for simultaneously meeting biological, surgical, and engineering restrictions in successful biohybrid systems design. Finally, challenges in present and future cochlear implants are outlined and directions of current research given.


2011 ◽  
Vol 341-342 ◽  
pp. 893-897
Author(s):  
Gui Zhou Wang ◽  
Guo Jin He

The retinex is a human perception based image processing algorithm which provides color constancy and dynamic range compression. The multi scale retinex with color restoration (MSRCR) has shown itself to be a very versatile automatic image enhancement algorithm that simultaneously provides dynamic range compression, color constancy, and color rendition. But the MSRCR results suffer from lower global brightness and partial color distortion. In order to improve the MSRCR method, this paper presents a modified MSRCR algorithm to Landsat-5 image enhancement considering percent liner stretch and histogram adjustment. Finally, the effect of modified MSRCR method on Landsat-5 image enhancement is analyzed and the comparison with other color adjustment methods such as gamma correction and histogram equalization is reported in the experimental results.


2017 ◽  
Vol 8 (3-4) ◽  
pp. 143-153 ◽  
Author(s):  
Rishi Kant Singh ◽  
Sanjay Kumar ◽  
Pramod Kumar Gautam ◽  
Munendra Singh Tomar ◽  
Praveen Kumar Verma ◽  
...  

AbstractProtein kinase C (PKC) comprises a family of lipid-sensitive enzymes that have been involved in a broad range of cellular functions. PKC-α is a member of classical PKC with ubiquitous expression and different cellular localization. This unique PKC isoform is activated by various signals which evoke lipid hydrolysis, after activation it interacts with various adapter proteins and is localized to specific cellular compartments where it is devised to work. The universal expression and activation by various stimuli make it a perfect player in uncountable cellular functions including differentiation, proliferation, apoptosis, cellular transformation, motility, adhesion and so on. However, these functions are not intrinsic properties of PKC-α, but depend on cell types and conditions. The activities of PKC-α are managed by the various pharmacological activators/inhibitors and antisense oligonucleotides. The aim of this review is to elaborate the structural feature, and provide an insight into the mechanism of PKC-α activation and regulation of its key biological functions in different cellular compartments to develop an effective pharmacological approach to regulate the PKC-α signal array.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Violette Dirix ◽  
Virginie Verscheure ◽  
Françoise Vermeulen ◽  
Iris De Schutter ◽  
Tessa Goetghebuer ◽  
...  

Infant CD4+T-cell responses to bacterial infections or vaccines have been extensively studied, whereas studies on CD8+T-cell responses focused mainly on viral and intracellular parasite infections. Here we investigated CD8+T-cell responses uponBordetella pertussisinfection in infants, children, and adults and pertussis vaccination in infants. Filamentous hemagglutinin-specific IFN-γsecretion by circulating lymphocytes was blocked by anti-MHC-I or -MHC-II antibodies, suggesting that CD4+and CD8+T lymphocytes are involved in IFN-γproduction. Flow cytometry analyses confirmed that both cell types synthesized antigen-specific IFN-γ, although CD4+lymphocytes were the major source of this cytokine. IFN-γsynthesis by CD8+cells was CD4+T cell dependent, as evidenced by selective depletion experiments. Furthermore, IFN-γsynthesis by CD4+cells was sometimes inhibited by CD8+lymphocytes, suggesting the presence of CD8+regulatory T cells. The role of this dual IFN-γsecretion by CD4+and CD8+T lymphocytes in pertussis remains to be investigated.


2009 ◽  
Author(s):  
Bahareh Haji-saeed ◽  
Jed Khoury ◽  
Charles L. Woods ◽  
John Kierstead ◽  
Nasser Peyghambarian

2007 ◽  
pp. 199-221
Author(s):  
Mark Kolber ◽  
Daniel Lee

2014 ◽  
Vol 80 (12) ◽  
pp. 1206-1212
Author(s):  
Yosuke NAGASAKA ◽  
Takuma FUNAHASHI ◽  
Hiroyasu KOSHIMIZU

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4937 ◽  
Author(s):  
Vishwaratn Asthana ◽  
Yuqi Tang ◽  
Adam Ferguson ◽  
Pallavi Bugga ◽  
Anantratn Asthana ◽  
...  

Cell quantification assays are essential components of most biological and clinical labs. However, many currently available quantification assays, including flow cytometry and commercial cell counting systems, suffer from unique drawbacks that limit their overall efficacy. In order to address the shortcomings of traditional quantification assays, we have designed a robust, low-cost, automated microscopy-based cytometer that quantifies individual cells in a multiwell plate using tools readily available in most labs. Plating and subsequent quantification of various dilution series using the automated microscopy-based cytometer demonstrates the single-cell sensitivity, near-perfect R2 accuracy, and greater than 5-log dynamic range of our system. Further, the microscopy-based cytometer is capable of obtaining absolute counts of multiple cell types in one well as part of a co-culture setup. To demonstrate this ability, we recreated an experiment that assesses the tumoricidal properties of primed macrophages on co-cultured tumor cells as a proof-of-principle test. The results of the experiment reveal that primed macrophages display enhanced cytotoxicity toward tumor cells while simultaneously losing the ability to proliferate, an example of a dynamic interplay between two cell populations that our microscopy-based cytometer is successfully able to elucidate.


Sign in / Sign up

Export Citation Format

Share Document