scholarly journals Expression Pattern and Subcellular Localization of Human Papillomavirus Minor Capsid Protein L2

2009 ◽  
Vol 174 (1) ◽  
pp. 136-143 ◽  
Author(s):  
Zhenhua Lin ◽  
Anna V. Yemelyanova ◽  
Ratish Gambhira ◽  
Subhashini Jagu ◽  
Craig Meyers ◽  
...  
2006 ◽  
Vol 80 (13) ◽  
pp. 6691-6696 ◽  
Author(s):  
Luise Florin ◽  
Katrin A. Becker ◽  
Carsten Lambert ◽  
Thorsten Nowak ◽  
Cornelia Sapp ◽  
...  

ABSTRACT Papillomaviruses enter cells via endocytosis (H. C. Selinka et al., Virology 299:279-287, 2002). After egress from endosomes, the minor capsid protein L2 accompanies the viral DNA to the nucleus and subsequently to the subnuclear promyelocytic leukemia protein bodies (P. M. Day et al., Proc. Natl. Acad. Sci. USA 101:14252-14257, 2004), suggesting that this protein may be involved in the intracytoplasmic transport of the viral genome. We now demonstrate that the L2 protein is able to interact with the microtubule network via the motor protein dynein. L2 protein was found attached to microtubules after uncoating of incoming human papillomavirus pseudovirions. Based on immunofluorescence and coimmunoprecipitation analyses, the L2 region interacting with dynein is mapped to the C-terminal 40 amino acids. Mutations within this region abrogating the L2/dynein interaction strongly reduce the infectivity of pseudoviruses, indicating that this interaction mediates the minus-end-directed transport of the viral genome along microtubules towards the nucleus.


2015 ◽  
Vol 89 (20) ◽  
pp. 10442-10452 ◽  
Author(s):  
Stephen DiGiuseppe ◽  
Timothy R. Keiffer ◽  
Malgorzata Bienkowska-Haba ◽  
Wioleta Luszczek ◽  
Lucile G. M. Guion ◽  
...  

ABSTRACTThe human papillomavirus (HPV) capsid is composed of the major capsid protein L1 and the minor capsid protein L2. During entry, the HPV capsid undergoes numerous conformational changes that result in endosomal uptake and subsequent trafficking of the L2 protein in complex with the viral DNA to thetrans-Golgi network. To facilitate this transport, the L2 protein harbors a number of putative motifs that, if capable of direct interaction, would interact with cytosolic host cell factors. These data imply that a portion of L2 becomes cytosolic during infection. Using a low concentration of digitonin to selectively permeabilize the plasma membrane of infected cells, we mapped the topography of the L2 protein during infection. We observed that epitopes within amino acid residues 64 to 81 and 163 to 170 and a C-terminal tag of HPV16 L2 are exposed on the cytosolic side of intracellular membranes, whereas an epitope within residues 20 to 38, which are upstream of a putative transmembrane region, is luminal. Corroborating these findings, we also found that L2 protein is sensitive to trypsin digestion during infection. These data demonstrate that the majority of the L2 protein becomes accessible on the cytosolic side of intracellular membranes in order to interact with cytosolic factors to facilitate vesicular trafficking.IMPORTANCEIn order to complete infectious entry, nonenveloped viruses have to pass cellular membranes. This is often achieved through the viral capsid protein associating with or integrating into intracellular membrane. Here, we determine the topography of HPV L2 protein in the endocytic vesicular compartment, suggesting that L2 becomes a transmembrane protein with a short luminal portion and with the majority facing the cytosolic side for interaction with host cell transport factors.


2012 ◽  
Vol 132 (3) ◽  
pp. E139-E148 ◽  
Author(s):  
Hanna Seitz ◽  
Markus Schmitt ◽  
Gerd Böhmer ◽  
Annette Kopp-Schneider ◽  
Martin Müller

2005 ◽  
Vol 79 (7) ◽  
pp. 3938-3948 ◽  
Author(s):  
Sigrid C. Holmgren ◽  
Nicole A. Patterson ◽  
Michelle A. Ozbun ◽  
Paul F. Lambert

ABSTRACT Prior studies, which have relied upon the use of pseudovirions generated in heterologous cell types, have led to sometimes conflicting conclusions regarding the role of the minor capsid protein of papillomaviruses, L2, in the viral life cycle. In this study we carry out analyses with true virus particles assembled in the natural host cell to assess L2's role in the viral infectious life cycle. For these studies we used the organotypic (raft) culture system to recapitulate the full viral life cycle of the high-risk human papillomavirus HPV31, which was either wild type or mutant for L2. After transfection, the L2 mutant HPV31 genome was able to establish itself as a nuclear plasmid in proliferating populations of poorly differentiated (basal-like) human keratinocytes and to amplify its genome to high copy number, support late viral gene expression, and cause formation of virus particles in human keratinocytes that had been induced to undergo terminal differentiation. These results indicate that aspects of both the nonproductive and productive phases of the viral life cycle occur normally in the absence of functional L2. However, upon the analysis of the virus particles generated, we found an approximate 10-fold reduction in the amount of viral DNA encapsidated into L2-deficient virions. Furthermore, there was an over-100-fold reduction in the infectivity of L2-deficient virus. Because the latter deficiency cannot be accounted for solely by the 10-fold decrease in encapsidation, we conclude that L2 contributes to at least two steps in the production of infectious virus.


2019 ◽  
Vol 400 (4) ◽  
pp. 513-522 ◽  
Author(s):  
Bastian Breiner ◽  
Laura Preuss ◽  
Nora Roos ◽  
Marcel Conrady ◽  
Hauke Lilie ◽  
...  

Abstract The minor capsid protein L2 of papillomaviruses exhibits multiple functions during viral entry including membrane interaction. Information on the protein is scarce, because of its high tendency of aggregation. We determined suitable conditions to produce a functional human papillomavirus (HPV) 16 L2 protein and thereby provide the opportunity for extensive in vitro analysis with respect to structural and biochemical information on L2 proteins and mechanistic details in viral entry. We produced the L2 protein of high-risk HPV 16 in Escherichia coli as inclusion bodies and purified the protein under denaturing conditions. A successive buffer screen resulted in suitable conditions for the biophysical characterization of 16L2. Analytical ultracentrifugation of the refolded protein showed a homogenous monomeric species. Furthermore, refolded 16L2 shows secondary structure elements. The N-terminal region including the proposed transmembrane region of 16L2 shows alpha-helical characteristics. However, overall 16L2 appears largely unstructured. Refolded 16L2 is capable of binding to DNA indicating that the putative DNA-binding regions are accessible in refolded 16L2. Further the refolded protein interacts with liposomal membranes presumably via the proposed transmembrane region at neutral pH without structural changes. This indicates that 16L2 can initially interact with membranes via pre-existing structural features.


2010 ◽  
Vol 84 (21) ◽  
pp. 11585-11589 ◽  
Author(s):  
Martina Bergant Marušič ◽  
Nina Mencin ◽  
Mia Ličen ◽  
Lawrence Banks ◽  
Helena Šterlinko Grm

ABSTRACT The human papillomavirus (HPV) minor capsid protein L2 plays important roles in the generation of infectious viral particles and in the initial steps of infection. Here we show that HPV-16 L2 protein is sumoylated at lysine 35 and that sumoylation affects its stability. Interestingly, the sumoylated form of L2 cannot bind to the major capsid protein L1, suggesting a mechanism by which capsid assembly may be modulated in an infected cell. Additionally, L2 appears to modulate the overall sumoylation status of the host cell. These observations indicate a complex interplay between the HPV L2 protein and the host sumoylation machinery.


Sign in / Sign up

Export Citation Format

Share Document