scholarly journals Current, Magnetic Field and Joule Heating in Electroslag Remelting Processes

2012 ◽  
Vol 52 (7) ◽  
pp. 1289-1295 ◽  
Author(s):  
Baokuan Li ◽  
Fang Wang ◽  
Fumitaka Tsukihashi
2018 ◽  
Vol 28 (4) ◽  
pp. 1-5 ◽  
Author(s):  
Chao Li ◽  
Jianzhao Geng ◽  
Jamie Gawith ◽  
Boyang Shen ◽  
Xiuchang Zhang ◽  
...  

2016 ◽  
Vol 170 ◽  
pp. 93-96 ◽  
Author(s):  
Bo Chen ◽  
Yang Li ◽  
Xiquan Zhang ◽  
Fei Liu ◽  
Yanlong Liu ◽  
...  

1970 ◽  
Vol 12 (4) ◽  
Author(s):  
Md. Shariful Islam, Yoshihumi Kusumoto, Md. Abdulla Al-Mamun And Yuji Horie

We synthesized mixed α and γ-Fe2O3 nanoparticles and investigated their toxic effects against HeLa cells under induced AC (alternating current) magnetic-fields and photoexcited conditions at room temperature. The findings revealed that the cell-killing percentage was increased with increasing dose for all types of treatments. Finally, 99% cancer cells were destructed at 1.2 mL dose when exposed to combined AC magnetic-field and photoexcited conditions (T3) whereas 89 and 83 % of HeLa cells were killed under only AC magnetic-field induced (T1) or only photoexcited (T2) condition at the same dose.ABSTRAK: Campuran α dan zarah γ-Fe2O3 bersaiz nano disintesiskan dan kesan toksidnya terhadap sel HeLa dikaji dibawah aruhan medan magnet arus ulang-alik (alternating current (AC)) dan keadaan photoexcited (proses ransangan atom atau molekul suatu bahan dengan penyerapan tenaga sinaran) pada suhu bilik. Penemuan mendedahkan bahawa peratusan sel yang musnah bertambah dengan pertambahan dos untuk semua jenis rawatan. Akhirnya, 99% sel kanser dimusnahkan pada kadar dos 1.2mL setelah didedahkan terhadap kombinasi medan magnet AC dan keadaan photoexcited (T3) dimana 89% dan 83% sel HeLa dimusnahkan dengan hanya di bawah aruhan medan magnet AC (T1) atau hanya pada keadaan photoexcited (T2) pada kadar dos yang sama.KEY WORDS : Cancer, Hyperthermia, Iron oxide nanoparticles, Heat dissipation,    Cytotoxicity, HeLa cell.


Author(s):  
Henrik Melin

We review the current understanding of the upper atmospheres of Uranus and Neptune, and explore the upcoming opportunities available to study these exciting planets. The ice giants are the least understood planets in the solar system, having been only visited by a single spacecraft, in 1986 and 1989, respectively. The upper atmosphere plays a critical role in connecting the atmosphere to the forces and processes contained within the magnetic field. For example, auroral current systems can drive charged particles into the atmosphere, heating it by way of Joule heating. Ground-based observations of H 3 + provides a powerful remote diagnostic of the physical properties and processes that occur within the upper atmosphere, and a rich dataset exists for Uranus. These observations span almost three decades and have revealed that the upper atmosphere has continuously cooled between 1992 and 2018 at about 8 K/year, from approximately 750 K to approximately 500 K. The reason for this trend remain unclear, but could be related to seasonally driven changes in the Joule heating rates due to the tilted and offset magnetic field, or could be related to changing vertical distributions of hydrocarbons. H 3 + has not yet been detected at Neptune, but this discovery provides low-hanging fruit for upcoming facilities such as the James Webb Space Telescope and the next generation of 30 m telescopes. Detecting H 3 + at Neptune would enable the characterization of its upper atmosphere for the first time since 1989. To fully understand the ice giants, we need dedicated orbital missions, in the same way the Cassini spacecraft explored Saturn. Only by combining in situ observations of the magnetic field with in-orbit remote sensing can we get the complete picture of how energy moves between the atmosphere and the magnetic field. This article is part of a discussion meeting issue ‘Future exploration of ice giant systems’.


2008 ◽  
Vol 483 (1) ◽  
pp. 223-230 ◽  
Author(s):  
V. Urpin ◽  
D. Konenkov

Author(s):  
Huei Chu Weng

The presence of current flow in an electric and magnetic field results in electromagnetic force and joule heating. It is desirable to understand the roles of electromagnetic force and joule heating on gas microflow and heat transfer. In this study, a mathematical model is developed of the pressure-driven gas flow through a long isothermally heated horizontal planar microchannel in the presence of an external electric and magnetic field. The solutions for flow and thermal field and characteristics are derived analytically and presented in terms of dimensionless parameters. It is found that an electromagnetic driving force can be produced by a combined non-zero electric field and a negative magnetic field and results in an additional velocity slip and an additional flow drag. Also, a joule heating can be enhanced by an applied positive magnetic field and therefore results in an additional temperature jump and an additional heat transfer.


Sign in / Sign up

Export Citation Format

Share Document