scholarly journals Mechanical Property of Ultrafine Elongated Grain Structure Steel Processed by Warm Tempforming and Its Application to Ultra-High-Strength Bolt

2020 ◽  
Vol 60 (6) ◽  
pp. 1108-1126 ◽  
Author(s):  
Yuuji Kimura ◽  
Tadanobu Inoue
Alloy Digest ◽  
1975 ◽  
Vol 24 (1) ◽  

Abstract FORMALOY is a high-strength, high-purity zinc-base alloy with excellent performance in dies for forming sheet metal. It has a fine, dense grain structure which contributes markedly to its good toughness, excellent machinability and ability to develop a high polish. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, and joining. Filing Code: Zn-17. Producer or source: Federated Metals Corporation, ASARCO Inc..


2019 ◽  
Vol 7 (2) ◽  
pp. 324-333 ◽  
Author(s):  
Xiaoyan Zhao ◽  
Jun Liang ◽  
Guorong Shan ◽  
Pengju Pan

Interaction between networks has been proven to be of importance for mechanical property enhancement of double-network (DN) hydrogels.


2011 ◽  
Vol 704-705 ◽  
pp. 1465-1472
Author(s):  
Jin Wu ◽  
Da Sen Bi ◽  
Liang Chu ◽  
Jian Zhang ◽  
Yun Tao Li

Dual phase (DP) steel is a high strength steel for auto-panel. In this paper, mechanical property, forming ability, baked-hardening and work hardening properties of high strength steel DP450 are studied by experiments, and compared with those of steel MS6000.And theoretical research on predicting the forming limit of steel DP450 by the NADDRG model. The established mathematic model for relativity is of practical usefulness. Experimental results reveal that the yield strength of steel DP450 is about 7.2% lower than the MS6000,and the break strength increases by 18.9%,while the elongation increases by 19%.The strain hardening exponent of steel DP450 are superior to those of MS6000.The results show that mechanical property of high strength steel DP450 is better than that of MS6000,while forming ability of DP450 is not lower than that of MS6000.And baked-hardening and work hardening properties of steel DP450 are better than those of MS6000.The steel sheet DP450 owned a good forming ability.


2010 ◽  
Vol 150-151 ◽  
pp. 1754-1757 ◽  
Author(s):  
Peng Liu ◽  
Zhi Wu Yu ◽  
Ling Kun Chen ◽  
Zhu Ding

The influence of curing time on the mechanical property of the phosphoaluminate cement (PAC) was investigated, and the mechanism was discussed as well. The phase composition and morphology of hydration products, electrical properties, porosity and pore size distribution of PAC cured different age were analyzed with XRD, EIS and MIP. The results showed PAC has the property of early-high strength, and the compressive strength of PAC cured for 1 day was about 70% of 28 days’. The main hydration products of PAC are micro-crystal phase and gel of phosphate and phosphoaluminate which formed compacter microstructure. In addition, there are no calcium hydroxide (CH) and ettringite (AFt) produced during the process of hydration. The compressive strength of PAC increased with age, which was due to more products continuously produced. The ac resistance analysis manifested as the change of the nyquist pattern and resistance value.


Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 2041-2053
Author(s):  
Jinfeng Jiao ◽  
Zhanxiang Liu ◽  
Qi Guo ◽  
Yong Liu ◽  
Honggang Lei

Author(s):  
Mehdi Soltan Ali Nezhad ◽  
Sadegh Ghazvinian ◽  
Mahmoud Amirsalehi ◽  
Amir Momeni

Abstract Three steels were designed based on HSLA-100 with additional levels of Mn, Ni, Cr and Cu. The steels were prepared by controlled rolling and tempered at temperatures in range of 550–700°C. The continuous cooling time curves were shifted to longer times and lower temperatures with the increased tendency for the formation of martensite at lower cooling rates. The microstructures revealed that controlled rolling results in austenite with uniform fine grain structure. The steel with the highest amount of Mn showed the greatest strength after tempering at 750 °C. The top strength was attributed to the formation of Cu-rich particles. The steel with 1.03 wt.% Mn, tempered at 650 °C exhibited the best Charpy impact toughness at –85°C. On the other hand, the steel that contained 2.11 wt.% Mn and tempered at 700 °C showed the highest yield strength of 1 097.5 MPa (∼159 ksi) and an impact toughness of 41.6 J at –85°C.


2015 ◽  
Vol 55 (5) ◽  
pp. 877-885 ◽  
Author(s):  
K. Şahin ◽  
N. A. Fasanella ◽  
P. V. Kolluru ◽  
I. Chasiotis

Sign in / Sign up

Export Citation Format

Share Document