Simultaneous effective treatment of critical COVID-19 disease and newly diagnosed high-risk multiple myeloma with thalidomide, methylprednisolone, tocilizumab and baricitinib: is it clinically feasible?

Author(s):  
Balint G. SZABO ◽  
Csaba LORINCZI ◽  
Judit SZANKA ◽  
Botond LAKATOS ◽  
Janos SINKO ◽  
...  
BMJ Open ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. e046225
Author(s):  
Sarah Brown ◽  
Debbie Sherratt ◽  
Samantha Hinsley ◽  
Louise Flanagan ◽  
Sadie Roberts ◽  
...  

IntroductionMultiple myeloma (MM) is a plasma cell tumour with over 5800 new cases each year in the UK. The introduction of biological therapies has improved outcomes for the majority of patients with MM, but in approximately 20% of patients the tumour is characterised by genetic changes which confer a significantly poorer prognosis, generally termed high-risk (HR) MM. It is important to diagnose these genetic changes early and identify more effective first-line treatment options for these patients.Methods and analysisThe Myeloma UK nine OPTIMUM trial (MUKnine) evaluates novel treatment strategies for patients with HRMM. Patients with suspected or newly diagnosed MM, fit for intensive therapy, are offered participation in a tumour genetic screening protocol (MUKnine a), with primary endpoint proportion of patients with molecular screening performed within 8 weeks. Patients identified as molecularly HR are invited into the phase II, single-arm, multicentre trial (MUKnine b) investigating an intensive treatment schedule comprising bortezomib, lenalidomide, daratumumab, low-dose cyclophosphamide and dexamethasone, with single high-dose melphalan and autologous stem cell transplantation (ASCT) followed by combination consolidation and maintenance therapy. MUKnine b primary endpoints are minimal residual disease (MRD) at day 100 post-ASCT and progression-free survival. Secondary endpoints include response, safety and quality of life. The trial uses a Bayesian decision rule to determine if this treatment strategy is sufficiently active for further study. Patients identified as not having HR disease receive standard treatment and are followed up in a cohort study. Exploratory studies include longitudinal whole-body diffusion-weighted MRI for imaging MRD testing.Ethics and disseminationEthics approval London South East Research Ethics Committee (Ref: 17/LO/0022, 17/LO/0023). Results of studies will be submitted for publication in a peer-reviewed journal.Trial registration numberISRCTN16847817, May 2017; Pre-results.


2016 ◽  
Vol 16 ◽  
pp. S76-S77
Author(s):  
Despina Fotiou ◽  
Grigoris Gerotziafas ◽  
Flora Zagouri ◽  
Theodoros Sergentanis ◽  
Kimon Stamatelopoulos ◽  
...  

2019 ◽  
Vol 3 (5) ◽  
pp. 744-750 ◽  
Author(s):  
Nidhi Tandon ◽  
Surbhi Sidana ◽  
S. Vincent Rajkumar ◽  
Morie A. Gertz ◽  
Francis K. Buadi ◽  
...  

Abstract We evaluated the impact of achieving a rapid response in 840 newly diagnosed multiple myeloma patients from 2004 to 2015. Rates of very good partial response (VGPR) or better were 29% (240/840) after 2 cycles of treatment, 42% (350/840) after 4 cycles of treatment, and 66% (552/840) as best response. Early responders after 2 cycles of treatment had higher rates of light chain disease, anemia, renal failure, International Staging System (ISS) stage III disease, and high-risk cytogenetics, especially t(4;14), and were more likely to have received triplet therapy and undergo transplant. Median progression-free survival (PFS) and overall survival (OS) were not different among patients with ≥VGPR and <VGPR after 2 cycles (PFS, 28 vs 30 months, P = .6; OS, 78 vs 96 months, P = .1) and 4 cycles (PFS, 31 vs 29 months; OS, 89 vs 91 months, P = .9), although both were improved, with ≥VGPR as best response (PFS, 33 vs 22 months, P < .001; OS, 102 vs 77 months, P = .003). On multivariate analysis stratified by transplant status, achievement of ≥VGPR after 2 cycles was not associated with improved PFS (hazard ratio [95% confidence interval]; transplant cohort, 1.1 [0.7-1.6]; nontransplant cohort, 1.2 [0.8-1.7]) or OS (transplant cohort, 1.6 [0.9-2.9]; nontransplant cohort, 1.5 [1.0-2.4]). Covariates in the model included high-risk cytogenetics, ISS stage III, triplet therapy, creatinine ≥2 mg/dL, light chain disease, and age. Although patients with high-risk disease are more likely to achieve early response, a rapid achievement of a deep response by itself does not affect long-term outcomes.


Sign in / Sign up

Export Citation Format

Share Document