The Proterozoic basement of Texas

2021 ◽  
Author(s):  
M. A. Barnes ◽  
T. E. Ewing ◽  
C. G. Barnes
Keyword(s):  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mohd Yawar Ali Khan ◽  
Mohamed ElKashouty ◽  
Ali Mohammad Subyani ◽  
Fuqiang Tian ◽  
Waleed Gusti

AbstractProterozoic basement aquifers are the primary source of water supply for the local populations in the Aseer (also spelled “Asir” or “Assir”) province located in the southwest of Saudi Arabia (SA) since high evaporation rates and low rainfall are experienced in the region. Groundwater assets are receiving a lot of attention as a result of the growing need for water due to increased urbanization, population, and agricultural expansion. People have been pushed to seek groundwater from less reliable sources, such as fracture bedrocks. This study is centered on identifying the essential contributing parameters utilizing an integrated multi-criteria analysis and geospatial tools to map groundwater potential zones (GWPZs). The outcome of the GWPZs map was divided into five categories, ranging from very high to negligible potential. The results concluded that 57% of the investigated area (southwestern parts) showed moderate to very high potentials, attributed to Wadi deposits, low topography, good water quality, and presence of porosity and permeability. In contrast, the remaining 43% (northeastern and southeastern parts) showed negligible aquifer potential zones. The computed GWPZs were validated using dug well sites in moderate to very high aquifer potentials. Total dissolved solids (TDS) and nitrate (NO32−) concentrations were highest and lowest in aquifers, mainly in negligible and moderate to very high potential zones, respectively. The results were promising and highlighted that such integrated analysis is decisive and can be implemented in any region facing similar groundwater expectations and management.


Author(s):  
M. Aftalion ◽  
O. van Breemen ◽  
D. R. Bowes

ABSTRACTThe existence of a basement of granulite beneath the Midland Valley is supported by investigations of inclusions in volcanic rocks and the geophysical studies of the LISPB experiment. To establish age constraints for this basement, a compilation is presented of available Rb–Sr whole-rock, common lead, U–Pb zircon and Sm–Nd radiometrie data for crystalline rocks in Scotland from the earliest recognised crust (c. 2900 Ma) to 380 Ma (“end” of Caledonian orogeny) including xenoliths in volcanic vents and boulders in conglomerates.For rocks within the Midland Valley, isotopic data provide four lines of evidence. (1) An upper intercept U–Pb age of c. 1700 Ma for detrital zircons from a lower Palaeozoic greywacke from Dalmellington corresponds to a late stage of the Laxfordian orogenic episode (early Proterozoic) with possibly some overprinting during the Grenvillian episode (mid Proterozoic). (2) The common lead composition of the Distinkhorn granite suggests the participation of early Proterozoic basement during granite emplacement. (3) For xenoliths from the Carboniferous Partan Craig vent, one gives a Sm–Nd CHUR model age of 1180 ± 55 Ma, a second yielded a Sm–Nd garnet—potassium feldspar age of 356 ± 6 Ma and an upper intercept U–Pb age from zircons from the third is c. 2200 (± 240) Ma; for xenoliths from other vents, an Rb–Sr whole-rock isochron of 1101 ± 63 Ma and an Sm–Nd model age of c. 1100 Ma arerecorded. (4) A linear array corresponding to an apparent age of 770 ± 180 Ma on a Pb–Pb isochron diagram for Tertiary igneous rocks of Arran points to an underlying basement of late Precambrian orthogneiss.The existence of basement made of products of the Grenvillian episode, or predominantly so, similar to the basement N of the Highland Boundary fault, is not inconsistent with the available evidence. However, zircons and other rock components appear to have an ultimate Lewisian provenance. At least in parts, there is also a strong late Proterozoic imprint. Further studies are required for an unequivocal solution.


1981 ◽  
Vol 104 ◽  
pp. 5-46
Author(s):  
A.K Higgins ◽  
J.D Friderichsen ◽  
T Thyrsted

Results are presented of regional geological reconnaissance and local detailed studies. The new fjeld work, together with isotopic studies, has made possibie a provisional reassignment of metamorphic, plutonic and deformational events recorded in the different rock units to Archaean and Proterozoic, as well as Caledonian, orogenic episodes. The infracrustal elements of the 'central metamorphic complex' are considered to be essentiaIly Archaean - early Proterozoic basement gneiss complexes, and are overlain by middle Proterozoic metasedimentary sequences. The late Proterozoic and Lower Palaeozoic sediments have arestricted outcrop at present levels of exposure. During the Caledonian orogeny the late Proterozoic cover sequences appear to have become detatched from their older metamorphic 'basernent' along a decollement surface, but the nature of this contact is usually obscured by Caledonian metamorphic effects. The main characteristics of the different rock units are described. Detailed relationships are illustrated by studies of four areas: Nunatakgletscher-Eremitdal, Knækdalen and adjacent areas, Kap Hediund, and Tærskeldal-Forsblads Fjord-Randenæs.


2010 ◽  
Vol 58 ◽  
pp. 35-65
Author(s):  
Paul Martin Holm ◽  
L.E. Pedersen, ◽  
B Højsteen

More than 250 dykes cut the mid Proterozoic basement gneisses and granites of Bornholm. Most trend between NNW and NNE, whereas a few trend NE and NW. Field, geochemical and petrological evidence suggest that the dyke intrusions occurred as four distinct events at around 1326 Ma (Kelseaa dyke), 1220 Ma (narrow dykes), 950 Ma (Kaas and Listed dykes), and 300 Ma (NW-trending dykes), respectively. The largest dyke at Kelseaa (60 m wide) and some related dykes are primitive olivine tholeiites, one of which has N-type MORB geochemical features; all are crustally contaminated. The Kelseaa type magmas were derived at shallow depth from a fluid-enriched, relatively depleted, mantle source,but some have a component derived from mantle with residual garnet. They are suggested to have formed in a back-arc environment. The more than 200 narrow dykes are olivine tholeiites (some picritic), alkali basalts, trachybasalts, basanites and a few phonotephrites. The magmas evolved by olivine and olivine + clinopyroxene fractionation. They have trace element characteristics which can be described mainly by mixing of two components: one is a typical OIB-magma (La/Nb < 1, Zr/Nb = 4, Sr/Nd = 16) and rather shallowly derived from spinel peridotite; the other is enriched in Sr and has La/Nb = 1.0 - 1.5, Zr/Nb = 9, Sr/Nd = 30 and was derived at greater depth, probably from a pyroxenitic source. Both sources were probably recycled material in a mantle plume. A few of these dykes are much more enriched in incompatible elements and were derived from garnet peridotite by a small degree of partial melting. The Kaas and Listed dykes (20-40 m) and related dykes are evolved trachybasalts to basaltic trachyandesites. They are most likely related to the Blekinge Dalarne Dolerite Group. The few NW-trending dykes are quartz tholeiites, which were generated by large degrees of rather shallow melting of an enriched mantle source more enriched than the source of the older Bornholm dykes. The source of the NW-trending dykes was probably a very hot mantle plume.


2021 ◽  
pp. jgs2021-045
Author(s):  
B. Anders ◽  
S. Tyrrell ◽  
D. Chew ◽  
C. Mark ◽  
G. O'Sullivan ◽  
...  

Multiple factors (e.g. source rock composition, climate, nature/scale of sedimentary system) influence the volume and composition of sediment delivered to basins. Fluctuations in these parameters produce cryptic source signals which can vary within the same sedimentary system. Bespoke multi-proxy provenance approaches, targeted at minerals of variable stability, allow for an assessment of natural biasing (recycling) and intra-basinal spatial variations.Provenance of fluvial/deltaic sandstones (Mullaghmore Sandstone Formation) in the NW Carboniferous Basin, Ireland, has been constrained using zircon and apatite U-Pb geochronology, trace elements in apatite and Pb-in-K-feldspar analysis. Zircon U-Pb grain populations are consistent with feldspar data, suggesting Proterozoic basement highs offshore Ireland and Scotland were the main contributor with minor supply from Archean-Palaeoproterozoic rocks of Greenland/NW Scotland and Caledonian-aged rocks. However, apatite data shows a much larger proportion of Caledonian-aged grains of metamorphic origin, suggesting significant sediment was recycled from Neopropterozoic metasedimentary rocks. The spatial variation in provenance indicates that, at onset of clastic input, sediment was being routed to the basin through a complex drainage system, comprising of several discrete hinterland catchments, rather than supply from a single, large interconnected sedimentary system. Such complexities can only be identified with the careful application of a bespoke multi-proxy provenance approach.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5536691


Sign in / Sign up

Export Citation Format

Share Document