scholarly journals Comparative in vitro Dissolution Study of Clonazepam Tablets of Bangladesh by UV-Visible Spectrophotometry

2021 ◽  
Vol 59 (4) ◽  
pp. 641-653
Author(s):  
Sadman Rashed ◽  
Razwanur Tushar ◽  
Fairuza Ahmed ◽  
Nusrat J. Vabna ◽  
Laila Jahan ◽  
...  
Author(s):  
Surender Verma ◽  
S. Singh ◽  
D. Mishra ◽  
Atul Gupta ◽  
Rakesh Sharma

The objective of present study was to develop colon targeted drug delivery using bacterially triggered approach through oral route. Valdecoxib (COX-2 inhibitor) was chosen as a model drug in order to target it to colon which may prove useful in inflammatory bowel disease and related disorders. Matrix tablets of Valdecoxib were prepared by wet granulation technique utilizing different ratio of Guar gum and Sodium starch glycholate. The prepared matrix tablets were evaluated for uniformity of weight, uniformity of content, hardness and in vitro dissolution study in simulated gastric and intestinal fluid (Phosphate Buffer pH-1.2, pH-6.8 and pH-7.4), followed by Dissolution study in bio-relevant dissolution media Phosphate Buffer (pH-6.8) containing rat caecal content. The results revealed that the formulated batch had released lesser quantity of drug at pH 1.2 and pH 7.4 in 2 hors whereas in biorelevent dissolution media containing rat caecal content it released significantly higher amount of drug which was also significantly higher than the dissolution media of same pH without caecal content (microflora) and it was concluded that guar gum can be used as a potential carrier for targeting drugs to colon.


2007 ◽  
Vol 127 (1-4) ◽  
pp. 60-63 ◽  
Author(s):  
E. E. Aladova ◽  
S. A. Romanov ◽  
R. A. Guilmette ◽  
V. F. Khokhryakov ◽  
K. G. Suslova

INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (12) ◽  
pp. 34-40
Author(s):  
M Panchpuri ◽  
◽  
D Singh ◽  
A Semalty ◽  
M. Semalty

Ofloxacin, a second generation fluoroquinolone, shows poor aqueous solubility and dissolution profile. Thus, ofloxacin–β-cyclodextrin complexes were prepared to improve its dissolution by imparting an environment of improved hydrophilicity. Ofloxacin was complexed with β-cyclodextrin (in 1:1 and 1:2 molar ratio) by two different methods namely, solvent evaporation and kneading method. These inclusion complexes were evaluated for solubility, drug content, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X ray powder diffraction (XRPD) and in vitro dissolution study. The highest drug content (35.45%) was found in complex made by kneading method (OK1:1) in 1:1 molar ratio. All the complexes OSE1:1, OSE1:2, OK1:1, OK1:2 were found to be showing rough and porous surface morphology in SEM. Solubility as well as the dissolution of the complexes was found to be improved. Complex prepared by kneading method in 1:1 molar ratio (OK1:1) showed a marked improvement in percent drug release (88.94%) than that of pure drug (54.22%) at the end of 1 hour in dissolution study. FTIR, DSC and XRPD data confirmed the formation of inclusion complex. It was concluded that the complex made in 1:1 molar ratio (irrespective of the method) showed better solubility and dissolution profile as compared to complex made in 1:2 molar ratio.


Author(s):  
SHRIRAM H. BAIRAGI ◽  
R. S. GHOSH

Objective: To develop and validate the RP-HPLC method and in vitro dissolution study for escitalopram as antidepressant drug and their formulation. Methods: The chromatographic separation was done by using a C-18, 150 mm column and a mobile phase consisting of phosphate buffer (40%) and acetonitrile HPLC grade (60%). Detection was carried out at 211 nm with a flow rate of 1 ml/min with an injection of 20 μl. The method was validated with different parameters such as linearity, precision, accuracy, robustness, and limit of detection (LOD), the limit of quantification (LOQ) according to ICH guidelines. Results: The linear calibration curve was obtained in the concentration range of 0-50 μg/ml and gave an average correlation factor 0.992. The retention time was observed at 2.96 min. The Minimum concentration level at which the analyte can be reliably detected (LOD) and quantified (LOQ) were found to be 0.03 and 0.09 µg/ml, respectively. The relative standard deviation of intra and the inter-day assay was found to be less than 2. The dissolution studies show moderate dissolution (23.4%) after 45 min, but it reaches a plateau after approximately 25 min. Conclusion: This method was found to be simple, rapid and economic with less run time. The validated parameters manifest the method is reliable, linear, accurate and precise as well as robust with minor variations in chromatographic parameters. Therefore, the developed method can be applied for both routine analysis and quality control assay and it could be a very powerful tool to investigate the stability of escitalopram.


Author(s):  
Md. Saiful Islam ◽  
Rahat Jahan ◽  
Ahmad Tanwir ◽  
JakirAhmed Chowdhury

Author(s):  
Rahul Radke ◽  
Neetesh K. Jain

Aim: Ambrisentan is a endothelin type A selective receptor antagonist used in the management of pulmonary arterial hypertension. Ambrisentan is BCS Class II drug haves very poor solubility in water and shows incomplete absorption after oral administration. The present work was aimed to study the effect of amphiphilic graft co-polymer carrier on enhancement of solubility and dissolution rate of poorly water soluble drug ambrisentan. To improve the aqueous solubility of ambrisentan solid dispersion was formulated by using novel carrier amphiphilic graft co-polymer (Soluplus® ). Materials and Methods: Solid dispersion was prepared by kneading technique by utilizing various ratios of carrier. Obtained solid dispersions ware evaluated for solubility, percentage yield, drug content and in vitro dissolution study. Powder characterization was performed by infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Results: FTIR spectroscopy shows no interaction between drug and polymer. DSC study showed that endothermic peak of drug was completely disappeared in Solid dispersion suggesting complete miscibility of drug in Soluplus®. XRD study suggest the conversion of crystalline ambrisentan in to amorphous form. All solid dispersions prepared with Soluplus® as a carrier showed increase in solubility. Solubility of ambrisentan was found to be increased 7.17 fold in optimized SD formulation ASD5. In vitro dissolution study showed the faster drug release from SD formulation compare to its pure form. All solid dispersion formulation’s release more than 50% of drug in first 10 min. Conclusion: This study conclude that the preparation of amphiphilic graft co-polymer based solid dispersion prepared by kneading technique is found to be useful in enhancement the solubility and dissolution rate of ambrisentan.


Author(s):  
Krishna R. Gupta ◽  
Ashok R. Gautam ◽  
Anvesha V. Ganorkar ◽  
Milind J. Umekar

Aims: Synthesis/preparation of Lamotrigine (LMN) complexes with β-CD, Caffeine, Nicotinamide, EDTA and Development of a new reverse phase liquid chromatographic (HPLC) method for the investigation of Lamotrigine in rat plasma after oral administration and pharmacokinetic assessment of Lamotrigine. Study Design: The present work describes the formation of LMN drug complexes with β-Cyclodextrin, Caffeine, Nicotinamide and Disodium EDTA. Physical mixture, kneading and solvent evaporation methods were used to prepare LMN complexes (In ratios 1:1, 1:2, 2:1). Further characterization was performed by UV, FTIR, PXRD, and DSC. A reverse phase HPLC method was developed for the investigation of LMN in rat plasma using internal standardization method after oral administration of LMN and its complexes. Place and Duration of Study: Department of Pharmaceutical Chemistry, Smt. Kishoritai Bhoyar College of Pharmacy, RTMN University, Nagpur, between July 2018 and June 2019. Methodology: LMN complexes with β-CD, Caffeine, Nicotinamide, EDTA was prepared in three ratios i.e. 1:1, 1:2 and 2:1 and characterized by UV, FTIR, PXRD, and DSC. In-vitro Solubility study was performed by saturation solubility study, further % practical yield, drug content, melting point was determined. In-vitro dissolution study of prepared complexes was performed in dissolution apparatus using the paddle method, according to USP Type II. Dissolution studies were carried out using 900 mL 0.1M HCl at 37± 0.5°C at 50 revmin−1 (US FDA guidelines).The interaction of LMN with these hydrophilic complexing agents was characterized by UV, FTIR, PXRD and DSC. A reverse phase HPLC bioanalytical method was developed and validated as per ICH guidelines for the quantitative determination of LMN in rat plasma using internal standardization method (HTZ) after oral administration of LMN and its complexes. The method was successfully applied for the pharmacokinetic study in rat. The pharmacokinetic parameter like AUCt, AUCi, MRTi, Cmax, Tmax, t1/2, were calculated using pharmacokinetic software PK solver 2. The efficient separation was carried out for High Performance Liquid Chromatography (HPLC) method on Eclipse XDB-C18 (150×4.6×5 µ) column using a mobile phase consisting of filtered and degassed mixture of potassium dihydrogen orthophosphate buffer (pH 7.0) and Methanol in the ratio 65:35 v/v at a flow rate of 0.8 mL/min and UV detection at 307 nm. Results: The LMN complexes were successfully prepared and characterized by UV, FTIR, PXRD, and DSC from which solvent evaporation method was found to be best as per result of in-vitro dissolution study. In-vitro dissolution study reveals that LMN-Caffeine (C1) and LMN-NTM (N1) complexes showed 100.14 and 100.01% drug release at 15 min and 20 min respectively as compared to pure drug (LMN) which shows only 50.56% drug release at 75 min. LMN concentration in blood plasma reached (Cmax) was found to be 19.4732 µg/mL at Tmax of 5h, Whereas Cmax of LMN complexes were found to be 48.4876 (B1), 72.2160 (C1), 62.2739 (N1) and 49.3170 (E1) µg/mL at Tmax of 5h out of which complex C1 and N1 in the present study resulted in a sharp increase in Cmax. All complexes showed 4 to 5 time enhancement of Cmax as compared to LMN.. The results demonstrated that complexes of Lamotrigine were successful strategy to improve the solubility and dissolution behavior of Lamotrigine. The complex B1 shows maximum t1/2 and MRTi of 36.224 h and 52.441 h as compared to C1, N1 and E1 having t1/2 of 14.1575, 16.258 and 21.702 h and MRTi  of 19.997, 22.994 and 30.883 h respectively. Hence B1 required lesser dosing frequency as compared to other complexes. Conclusion: The Lamotrigine complexes were prepared and confirmation of prepared complexes was done by physical characterization (FTIR. DSC, PXRD and UV) and solubility determination by saturation solubility study. The bioanalytical method was developed for estimation of plasma drug concentration of LMN. The method was validated according to ICH guidelines to estimate the mean plasma concentration of LMN after oral administration using internal standardization method (HTZ). Method was reproducible and high recovery of LMN from its complexes was achieved. The method was found to be highly satisfactory sensitive, accurate, linear and specific.


Sign in / Sign up

Export Citation Format

Share Document