scholarly journals DEVELOPMENT AND EVALUATION OF NOVEL ESTIMATION TECHNIQUES FOR IN VITRO DISSOLUTION STUDY AND VALIDATION PROTOCOL FOR ESCITALOPRAM AS ANTIDEPRESSANT DRUG AND THEIR FORMULATION

Author(s):  
SHRIRAM H. BAIRAGI ◽  
R. S. GHOSH

Objective: To develop and validate the RP-HPLC method and in vitro dissolution study for escitalopram as antidepressant drug and their formulation. Methods: The chromatographic separation was done by using a C-18, 150 mm column and a mobile phase consisting of phosphate buffer (40%) and acetonitrile HPLC grade (60%). Detection was carried out at 211 nm with a flow rate of 1 ml/min with an injection of 20 μl. The method was validated with different parameters such as linearity, precision, accuracy, robustness, and limit of detection (LOD), the limit of quantification (LOQ) according to ICH guidelines. Results: The linear calibration curve was obtained in the concentration range of 0-50 μg/ml and gave an average correlation factor 0.992. The retention time was observed at 2.96 min. The Minimum concentration level at which the analyte can be reliably detected (LOD) and quantified (LOQ) were found to be 0.03 and 0.09 µg/ml, respectively. The relative standard deviation of intra and the inter-day assay was found to be less than 2. The dissolution studies show moderate dissolution (23.4%) after 45 min, but it reaches a plateau after approximately 25 min. Conclusion: This method was found to be simple, rapid and economic with less run time. The validated parameters manifest the method is reliable, linear, accurate and precise as well as robust with minor variations in chromatographic parameters. Therefore, the developed method can be applied for both routine analysis and quality control assay and it could be a very powerful tool to investigate the stability of escitalopram.

2018 ◽  
Vol 8 (5-s) ◽  
pp. 277-282 ◽  
Author(s):  
AK Jain ◽  
BK Dubey ◽  
D Basedia ◽  
S Dhakar ◽  
M Ahirwar ◽  
...  

An accurate, precise, sensitive and reproducible High-performance liquid chromatographic (HPLC) and UV spectrophotometric methods were developed and validated for the quantitative determination of haloperidol (HPD) in bulk drug and pharmaceutical formulation. Different analytical performance parameters such as linearity, precision, accuracy, specificity, limit of detection (LOD) and limit of quantification (LOQ) were determined according to International Conference on Harmonization ICH Q2B guidelines. The RP-HPLC method was developed by the isocratic technique on a reversed-phase Thermo C18 (250 × 4.6 mm, 5µm) column with mobile phase consisting of Methanol: Acetonitrile (50:50v/v) at flow rate of 1.0 ml/min. The retention time for HPD was 2.238±0.3min. The UV spectrophotometric determinations were performed at 244 nm using 80% methanol as a solvent. The linearity range for HPD was 5-25 μg/ml for both HPLC and UV method. The linearity of the calibration curves for each analyte in the desired concentration range was good (r2 >0.999) by both the HPLC and UV methods. The method showed good reproducibility and recovery with percent relative standard deviation less than 2%. Moreover, the accuracy and precision obtained with HPLC co-related well with the UV method which implied that UV spectroscopy can be a cheap, reliable and less time consuming alternative for chromatographic analysis. The proposed methods are highly sensitive, precise and accurate and hence successfully applied for determining the assay and in vitro dissolution of a marketed formulation. Keywords: HPLC, UV Spectrophotometry, Haloperidol, Pharmaceutical formulation, Method validation, Quantitative analysis


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 824
Author(s):  
Theano D. Karakosta ◽  
Paraskevas D. Tzanavaras ◽  
Constantinos K. Zacharis

In the present research, a zone fluidics-based automated sensor for the analysis of captopril in in vitro dissolution samples is reported. Captopril is reacted under flow conditions with Ni(II) (10 mmol L−1) in alkaline medium (0.15% v/v NH3) to form a stable derivate, which is monitored spectrophotometrically at 340 nm. The chemical and instrumental parameters were carefully investigated and optimized. The validation of the developed method was performed in the range of 5 to 120% of the expected maximum concentration using the accuracy profiles as a graphical decision-making tool. The β-expectation tolerance intervals did not exceed the acceptance criteria of ±10%, which means that 95% of future results will be encompassed in the defined bias limits. The variation of the relative bias ranged between −2.3% and 3.5% and the RSD values for repeatability and intermediate precision were lower than 2.3% in all cases. The limit of detection (LOD), and the lower and the upper limit of quantification (LLOQ, ULOQ) were satisfactory and found to be 1%, 5% and 120% (corresponding to 0.6, 2.78 and 66.67 μg mL−1 in dissolution medium). The developed method was successfully applied for the analysis of captopril in dissolution tests of two commercially available batches.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (02) ◽  
pp. 26-30
Author(s):  
Shaily Lalka ◽  
Munira Momin ◽  
Atul Sherje ◽  

The present work aims to develop a precise, accurate and validation method to estimate berberine hydrochloride and indomethacin in gel formulations. In the present work, 50% phosphate buffer pH 7.4, 25% methanol and 25% ethanol blend was used as a solvent to increase the solubility of both the drugs. The analytical wavelength for berberine hydrochloride and indomethacin was 343 nm and 316nm, respectively. The method was validated for linearity, accuracy, precision, limit of detection, limit of quantification and robustness as per the ICH guidelines. The validated method was then applied in the diffusion study of the drugs from two different gel formulations. Beer’s law was obeyed in the concentration range of 4-14 µg/ml and 10-60 µg/ml for berberine hydrochloride and indomethacin, respectively. The method was found to be accurate and precise with relative standard deviation within 2% as per the ICH guidelines.


2021 ◽  
Vol 08 ◽  
Author(s):  
Kumar Janakiraman ◽  
Venkateshwaran Krishnaswami ◽  
Vaidevi Sethuraman ◽  
Vijaya Rajendran ◽  
Ruckmani Kandasamy

Aim: To develop an RP-HPLC method for the simultaneous estimation of methotrexate (MTX) and minocycline (MNC). Background: Different HPLC methods were reported for the estimation of MTX/MNC individually, but there is no report for the simultaneous estimation of both MTX and MNC in a simple method. Objective: The objective of the developed method is to utilize the method for the estimation of MTX/MNC in different pharmaceutical formulations and in biological fluids. Methods: An HPLC method for the estimation of methotrexate (MTX) and minocycline (MNC) relevance to the evaluation of nanoparticulate formulations has been developed and validated. Chromatographic estimation was achieved using the mobile phase composition of sodium acetate buffer and acetonitrile (70:30% v/v) at pH 4.0 at a flow rate of 0.2 mL/min at 307 nm. Results: The calibration curve for MTX and MNC was found to be linear at nanogram (5 to 25 ng.mL-1) and microgram (5 to 25 μg.mL-1) levels at a correlation coefficient range of 0.98 to 0.99 for both MTX/MNC. The lower limit of detection and limit of quantification were found to be 0.026 ng.mL-1 and 0.079 ng.mL-1 for MTX and MNC, respectively. The percentage relative standard deviation for validation parameters of both drugs was found to be less than 6.5%. The amount of MTX and MNC present within the nanoparticles was found to be MTX (0.84 mg/mL) and MNC (0.61 mg/mL). The in vitro release showed an immediate release pattern for MTX (64.95±2.08%) and MNC (90.90±1.78%) within 12 h. Conclusion: The developed analytical method for the simultaneous estimation of MTX and MNC was found to be simple, affordable, dynamic, low cost, rapid and easy to perform with good repeatability. This method is also time consuming, since the peaks were obtained within a moderate analysis time.


Author(s):  
Surender Verma ◽  
S. Singh ◽  
D. Mishra ◽  
Atul Gupta ◽  
Rakesh Sharma

The objective of present study was to develop colon targeted drug delivery using bacterially triggered approach through oral route. Valdecoxib (COX-2 inhibitor) was chosen as a model drug in order to target it to colon which may prove useful in inflammatory bowel disease and related disorders. Matrix tablets of Valdecoxib were prepared by wet granulation technique utilizing different ratio of Guar gum and Sodium starch glycholate. The prepared matrix tablets were evaluated for uniformity of weight, uniformity of content, hardness and in vitro dissolution study in simulated gastric and intestinal fluid (Phosphate Buffer pH-1.2, pH-6.8 and pH-7.4), followed by Dissolution study in bio-relevant dissolution media Phosphate Buffer (pH-6.8) containing rat caecal content. The results revealed that the formulated batch had released lesser quantity of drug at pH 1.2 and pH 7.4 in 2 hors whereas in biorelevent dissolution media containing rat caecal content it released significantly higher amount of drug which was also significantly higher than the dissolution media of same pH without caecal content (microflora) and it was concluded that guar gum can be used as a potential carrier for targeting drugs to colon.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nadereh Rahbar ◽  
Fatemeh Ahmadi ◽  
Zahra Ramezani ◽  
Masoumeh Nourani

Background: Sample preparation is one of the most challenging phases in pharmaceutical analysis, especially in biological matrices, affecting the whole analytical methodology. Objective: In this study, a new Ca(II)/Cu(II)/alginate/CuO nanoparticles hydrogel fiber (CCACHF) was synthesized through a simple, green procedure and applied for fiber micro solid phase extraction (FMSPE) of diazepam (DIZ) and oxazepam (OXZ) as model drugs prior to high-performance liquid chromatography-UV detection (HPLC-UV). Methods: Composition and morphology of the prepared fiber were characterized and the effect of main parameters on the fiber fabrication and extraction efficiency have been studied and optimized. Results: In optimal conditions, calibration curves were linear ranging between 0.1–500 µg L−1 with regression coefficients of 0.9938 and 0.9968. Limit of detection (LOD) (S/N=3) and limit of quantification (LOQ) (S/N=10) of the technique for DIZ and OXZ were 0.03 to 0.1 µg L−1. Within-day and between-day relative standard deviations (RSDs) for DIZ and OXZ were 6.0–12.5% and 3.3–9.4%, respectively. Conclusion: The fabricated adsorbent has been substantially employed to extraction of selected benzo-diazepines (BZDs) from human serum real specimens and the obtained recoveries were also satisfactory (82.1-109.7%).


2020 ◽  
Vol 18 (1) ◽  
pp. 962-973
Author(s):  
Saira Arif ◽  
Sadia Ata

AbstractA rapid and specific method was developed for simultaneous quantification of hydrocortisone 21 acetate (HCA), dexamethasone (DEX), and fluocinolone acetonide (FCA) in whitening cream formulations using reversed-phase high-performance liquid chromatography. The effect of the composition of the mobile phase, analysis temperature, and detection wavelength was investigated to optimize the separation of studied components. The analytes were finally well separated using ACE Excel 2, C18 AR column having 150 mm length, 3 mm internal diameter, and 2 µm particle size at 35°C using methanol with 1% formic acid and double-distilled deionized water in the ratio of 60:40 (v/v), respectively, as the mobile phase in isocratic mode. Ten microliters of sample were injected with a flow rate of 0.5 mL/min. The specificity, linearity, accuracy, precision, recovery, limit of detection (LOD), limit of quantification (LOQ), and robustness were determined to validate the method as per International Conference on Harmonization guidelines. All the analytes were simultaneously separated within 8 min, and observed retention times of HCA, DEX, and FCA were 4.5, 5.5, and 6.9 min, respectively. The proposed method showed good linearity with the correlation coefficient, R2 = 0.999 over the range of 1–150 µg/mL for all standards. The linear regression equations were y = 12.7x + 118.7 (r = 0.999) for HCA, y = 12.9x + 106.8 (r = 0.999) for DEX, and y = 12.9x + 96.8 (r = 0.999) for FCA. The LOD was 0.25, 0.20, and 0.08 µg/mL for HCA, FCA, and DEX and LOQ was 2.06, 1.83, and 1.55 µg/mL for HCA, FCA, and DEX, respectively. The recovery values of HCA, DEX, and FCA ranged from 100.7–101.3, 102.0–102.6, and 100.2–102.0%, respectively, and the relative standard deviation for precision (intra- and interday) was less than 2, which indicated repeatability and reproducibility. The novelty of the method was described by forced degradation experimentation of all analytes in the combined form under acidic, basic, oxidative, and thermal stress. The proposed method was found to be simple, rapid, and reliable for the simultaneous determination of HCA, DEX, and FCA in cosmetics.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Indhu Priya Mabbu ◽  
G. Sumathi ◽  
N. Devanna

Abstract Background The aim of the present method is to develop and validate a specific, sensitive, precise, and accurate liquid chromatography-mass spectrometry (LC-MS) method for the estimation of the phenyl vinyl sulfone in the eletriptan hydrobromide. The effective separation of the phenyl vinyl sulfone was achieved by the Symmetry C18 (50 × 4.6 mm, 3.5 μm) column and a mobile phase composition of 0.1%v/v ammonia buffer to methanol (5:95 v/v), using 0.45 ml/min flow rate and 20 μl of injection volume, with methanol used as diluent. The phenyl vinyl sulfone was monitored on atomic pressure chemical ionization mode mass spectrometer with positive polarity mode. Results The retention time of phenyl vinyl sulfone was found at 2.13 min. The limit of detection (LOD) and limit of quantification (LOQ) were observed at 1.43 ppm and 4.77 ppm concentration respectively; the linear range was found in the concentration ranges from 4.77 to 27.00 ppm with regression coefficient of 0.9990 and accuracy in the range of 97.50–102.10%. The percentage relative standard deviation (% RSD) for six replicates said to be injections were less than 10%. Conclusion The proposed method was validated successfully as per ICH guidelines. Hence, this is employed for the determination of phenyl vinyl sulfone in the eletriptan hydrobromide.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhenlong Guo ◽  
YiFei Su ◽  
Kexin Li ◽  
MengYi Tang ◽  
Qiang Li ◽  
...  

AbstractThe development of detecting residual level of abamectin B1 in apples is of great importance to public health. Herein, we synthesized a octopus-like azobenzene fluorescent probe 1,3,5-tris (5′-[(E)-(p-phenoxyazo) diazenyl)] benzene-1,3-dicarboxylic acid) benzene (TPB) for preliminary detection of abamectin B1 in apples. The TPB molecule has been characterized by ultraviolet–visible absorption spectrometry, 1H-nuclear magnetic resonance, fourier-transform infrared (FT-IR), electrospray ionization mass spectroscopy (ESI-MS) and fluorescent spectra. A proper determination condition was optimized, with limit of detection and limit of quantification of 1.3 µg L−1 and 4.4 μg L−1, respectively. The mechanism of this probe to identify abamectin B1 was illustrated in terms of undergoing aromatic nucleophilic substitution, by comparing fluorescence changes, FT-IR and ESI-MS. Furthermore, a facile quantitative detection of the residual abamectin B1 in apples was achieved. Good reproducibility was present based on relative standard deviation of 2.2%. Six carboxyl recognition sites, three azo groups and unique fluorescence signal towards abamectin B1 of this fluorescent probe demonstrated reasonable sensitivity, specificity and selectivity. The results indicate that the octopus-like azobenzene fluorescent probe can be expected to be reliable for evaluating abamectin B1 in agricultural foods.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1837
Author(s):  
Harischandra Naik Rathod ◽  
Bheemanna Mallappa ◽  
Pallavi Malenahalli Sidramappa ◽  
Chandra Sekhara Reddy Vennapusa ◽  
Pavankumar Kamin ◽  
...  

A quick, sensitive, and reproducible analytical method for the determination of 77 multiclass pesticides and their metabolites in Capsicum and tomato by gas and liquid chromatography tandem mass spectrometry was standardized and validated. The limit of detection of 0.19 to 10.91 and limit of quantification of 0.63 to 36.34 µg·kg−1 for Capsicum and 0.10 to 9.55 µg·kg−1 (LOD) and 0.35 to 33.43 µg·kg−1 (LOQ) for tomato. The method involves extraction of sample with acetonitrile, purification by dispersive solid phase extraction using primary secondary amine and graphitized carbon black. The recoveries of all pesticides were in the range of 75 to 110% with a relative standard deviation of less than 20%. Similarly, the method precision was evaluated interms of repeatability (RSDr) and reproducibility (RSDwR) by spiking of mixed pesticides standards at 100 µg·kg−1 recorded anRSD of less than 20%. The matrix effect was acceptable and no significant variation was observed in both the matrices except for few pesticides. The estimated measurement uncertainty found acceptable for all the pesticides. This method found suitable for analysis of vegetable samples drawn from market and farm gates.


Sign in / Sign up

Export Citation Format

Share Document