Model Predictive Periodic Output Path Following

Author(s):  
Ignacio J. Sanchez ◽  
Agustina D'Jorge ◽  
Alejandro C. Limache ◽  
Alejandro H. Gonzalez ◽  
Antonio Ferramosca
Keyword(s):  
Author(s):  
Robin M. Neville ◽  
Rainer Groh ◽  
Alberto Pirrera ◽  
Mark Schenk
Keyword(s):  

2010 ◽  
Vol 36 (9) ◽  
pp. 1272-1278 ◽  
Author(s):  
Huo-Feng ZHOU ◽  
Bao-Li MA ◽  
Li-Hui SONG ◽  
Fang-Fang ZHANG

Processes ◽  
2017 ◽  
Vol 5 (4) ◽  
pp. 8 ◽  
Author(s):  
Eka Suwartadi ◽  
Vyacheslav Kungurtsev ◽  
Johannes Jäschke
Keyword(s):  

Author(s):  
Jinxiang Wang ◽  
Zhenwu Fang ◽  
Mengmeng Dai ◽  
Guodong Yin ◽  
Jingjing Xia ◽  
...  

A human-machine shared steering control is presented in this paper for tracking large-curvature path, considering uncertainties of driver’s steering characteristics. A driver-vehicle-road (DVR) model is proposed in which uncertain characteristic parameters are defined to describe the human driver’s steering behaviors in tracking large-curvature path. Then the radial basis function neural network (RBF) is used to estimate parameters of different drivers’ characteristics and to obtain the boundaries of these parameters. Parameter uncertainties of the driver’s steering characteristics and time-varying vehicle speed of the DVR model are handled with the Takagi-Sugeno (T-S) fuzzy logic. And these parameter uncertainties are considered in the design of the shared steering controller. Then based on the DVR model, a T-S fuzzy full-order dynamic compensator with D-pole assignment is designed to assist driver’s steering for tracking path with large curvature. Simulation results show that the proposed controller can provide individual levels of steering assistance in path following according to driver’s proficiency, and can improve driving comfort significantly.


Author(s):  
Tong Xu ◽  
Dong Wang ◽  
Weigong Zhang

Unmanned pavement construction is of great significance in China, and one of the most important issues is how to follow the designed path near the boundary of the pavement construction area to avoid curbs or railings. In this paper, we raise a simple yet effective controller, named the proportional-integral-radius and improved particle swarm optimization (PIR-IPSO) controller, for fast non-overshooting path-following control of an unmanned articulated vehicle (UAV). Firstly, UAV kinematics model is introduced and segmented UAV steering dynamics model is built through field experiments; then, the raw data collected by differential global positioning system (DGPS) is used to build the measurement error distribution model that simulates positioning errors. Next, line of sight (LOS) guidance law is introduced and the LOS initial parameter is assigned based on human driving behavior. Besides, the initial control parameters tuned by the Ziegler-Nichols (ZN) method are used as the initial iterative parameters of the PSO controller. An improved PSO fitness function is also designed to achieve fast non-overshoot control performance. Experiments show that compared with the PSO, ZN and ZN-PSO controller, the PIR-PSO-based controller has significantly less settling time and almost no overshoot in various UAV initial states. Furthermore, compared with other controllers, the proposed PIR-IPSO-based controller achieves precise non-overshoot control, relatively less settling time and centimeter-level positioning error in various initial deviations.


2021 ◽  
pp. 1-30
Author(s):  
A. Guo ◽  
Z. Zhou ◽  
R. Wang ◽  
X. Zhao ◽  
X. Zhu

Abstract The full-wing solar-powered UAV has a large aspect ratio, special configuration, and excellent aerodynamic performance. This UAV converts solar energy into electrical energy for level flight and storage to improve endurance performance. The UAV only uses a differential throttle for lateral control, and the insufficient control capability during crosswind landing results in a large lateral distance bias and leads to multiple landing failures. This paper analyzes 11 landing failures and finds that a large lateral distance bias at the beginning of the approach and the coupling of base and differential throttle control is the main reason for multiple landing failures. To improve the landing performance, a heading angle-based vector field (VF) method is applied to the straight-line and orbit paths following and two novel 3D Dubins landing paths are proposed to reduce the initial lateral control bias. The results show that the straight-line path simulation exhibits similar phenomenon with the practical failure; the single helical path has the highest lateral control accuracy; the left-arc to left-arc (L-L) path avoids the saturation of the differential throttle; and both paths effectively improve the probability of successful landing.


Sign in / Sign up

Export Citation Format

Share Document