Parameter Identification of Compressor Dynamics During Closed-Loop Operation

Author(s):  
J. Paduano ◽  
L. Valavani ◽  
A.H. Epstein
Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3429 ◽  
Author(s):  
Chu ◽  
Yuan ◽  
Hu ◽  
Pan ◽  
Pan

With increasing size and flexibility of modern grid-connected wind turbines, advanced control algorithms are urgently needed, especially for multi-degree-of-freedom control of blade pitches and sizable rotor. However, complex dynamics of wind turbines are difficult to be modeled in a simplified state-space form for advanced control design considering stability. In this paper, grey-box parameter identification of critical mechanical models is systematically studied without excitation experiment, and applicabilities of different methods are compared from views of control design. Firstly, through mechanism analysis, the Hammerstein structure is adopted for mechanical-side modeling of wind turbines. Under closed-loop control across the whole wind speed range, structural identifiability of the drive-train model is analyzed in qualitation. Then, mutual information calculation among identified variables is used to quantitatively reveal the relationship between identification accuracy and variables’ relevance. Then, the methods such as subspace identification, recursive least square identification and optimal identification are compared for a two-mass model and tower model. At last, through the high-fidelity simulation demo of a 2 MW wind turbine in the GH Bladed software, multivariable datasets are produced for studying. The results show that the Hammerstein structure is effective for simplify the modeling process where closed-loop identification of a two-mass model without excitation experiment is feasible. Meanwhile, it is found that variables’ relevance has obvious influence on identification accuracy where mutual information is a good indicator. Higher mutual information often yields better accuracy. Additionally, three identification methods have diverse performance levels, showing their application potentials for different control design algorithms. In contrast, grey-box optimal parameter identification is the most promising for advanced control design considering stability, although its simplified representation of complex mechanical dynamics needs additional dynamic compensation which will be studied in future.


10.5772/45818 ◽  
2012 ◽  
Vol 9 (1) ◽  
pp. 29 ◽  
Author(s):  
Wenxiang Wu ◽  
Shiqiang Zhu ◽  
Xuanyin Wang ◽  
Huashan Liu

This paper concerns the problem of dynamic parameter identification of robot manipulators and proposes a closed-loop identification procedure using modified Fourier series (MFS) as exciting trajectories. First, a static continuous friction model is involved to model joint friction for realizable friction compensation in controller design. Second, MFS satisfying the boundary conditions are firstly designed as periodic exciting trajectories. To minimize the sensitivity to measurement noise, the coefficients of MFS are optimized according to the condition number criterion. Moreover, to obtain accurate parameter estimates, the maximum likelihood estimation (MLE) method considering the influence of measurement noise is adopted. The proposed identification procedure has been implemented on the first three axes of the QIANJIANG-I 6-DOF robot manipulator. Experiment results verify the effectiveness of the proposed approach, and comparison between identification using MFS and that using finite Fourier series (FFS) reveals that the proposed method achieves better identification accuracy.


2021 ◽  
Vol 11 (9) ◽  
pp. 4303
Author(s):  
Quentin Leboutet ◽  
Julien Roux ◽  
Alexandre Janot ◽  
Julio Rogelio Guadarrama-Olvera ◽  
Gordon Cheng

This work aims at reviewing, analyzing and comparing a range of state-of-the-art approaches to inertial parameter identification in the context of robotics. We introduce “BIRDy (Benchmark for Identification of Robot Dynamics)”, an open-source Matlab toolbox, allowing a systematic and formal performance assessment of the considered identification algorithms on either simulated or real serial robot manipulators. Seventeen of the most widely used approaches found in the scientific literature are implemented and compared to each other, namely: the Inverse Dynamic Identification Model with Ordinary, Weighted, Iteratively Reweighted and Total Least-Squares (IDIM-OLS, -WLS, -IRLS, -TLS); the Instrumental Variables method (IDIM-IV), the Maximum Likelihood (ML) method; the Direct and Inverse Dynamic Identification Model approach (DIDIM); the Closed-Loop Output Error (CLOE) method; the Closed-Loop Input Error (CLIE) method; the Direct Dynamic Identification Model with Nonlinear Kalman Filtering (DDIM-NKF), the Adaline Neural Network (AdaNN), the Hopfield-Tank Recurrent Neural Network (HTRNN) and eventually a set of Physically Consistent (PC-) methods allowing the enforcement of parameter physicality using Semi-Definite Programming, namely the PC-IDIM-OLS, -WLS, -IRLS, PC-IDIM-IV, and PC-DIDIM. BIRDy is robot-agnostic and features a complete inertial parameter identification pipeline, from the generation of symbolic kinematic and dynamic models to the identification process itself. This includes functionalities for excitation trajectory computation as well as the collection and pre-processing of experiment data. In this work, the proposed methods are first evaluated in simulation, following a Monte Carlo scheme on models of the 6-DoF TX40 and RV2SQ industrial manipulators, before being tested on the real robot platforms. The robustness, precision, computational efficiency and context of application the different methods are investigated and discussed.


Sign in / Sign up

Export Citation Format

Share Document