Investigation of Behavior and Synthesis of Interval Dynamic Systems' Characteristic Polynomials Based on the Root Locus Portrait Parameter Function

Author(s):  
A.A. Nesenchuk
2019 ◽  
Vol 24 (1-2) ◽  
pp. 25-33
Author(s):  
Nesenchuk A.A. ◽  

Investigation of the 4 th order dynamic systems characteristic polynomials behavior in conditions of the interval parametric uncertainties is carried out on the basis of root locus portraits. The roots behavior regularities and corresponding diagrams for the root locus parameter distribution along the asymptotic stability bound are specified for the root locus portraits of the systems. On this basis the stability conditions are derived, graphic-analytical method is worked out for calculating intervals of variation for the polynomial family parameters ensuring its robust stability. The discovered regularities of the system root locus portrait behavior allow to extract hurwitz sub-families from the non-hurwitz families of interval polynomials and to determine whether there exists at least one stable polynomial in the unstable polynomial family.


1994 ◽  
Vol 116 (2) ◽  
pp. 305-309 ◽  
Author(s):  
T. R. Kurfess ◽  
M. L. Nagurka

In this paper, we present a geometric method for representing the classical root sensitivity function of linear time-invariant dynamic systems. The method employs specialized eigenvalue plots that expand the information presented in the root locus plot in a manner that permits determination by inspection of both the real and imaginary components of the root sensitivity function. We observe relationships between root sensitivity and eigenvalue geometry that do not appear to be reported in the literature and hold important implications for control system design and analysis.


2004 ◽  
Vol 11 (3-4) ◽  
pp. 209-225 ◽  
Author(s):  
Elvio Bonisoli ◽  
John E. Mottershead

The fact that a complex-damped model may represent the dynamic behaviour of elasto-mechanical systems when acted upon by a magnetic field was brought to the attention of the structural dynamics community very recently by Professor Bruno A. D. Piombo and his colleagues at the Politecnico di Torino. In this paper a thorough analysis of the single degree-of-freedom complex-damped mass-spring system is presented. The analysis includes the root locus, the (non-causal) impulse response, the frequency response and the transmissibility. Regions of different behaviour in the frequency response and transmissibility are described in detail. The stiffening behaviour observed in Prof. Piombo's experiments and known as the "phantom effect" is demonstrated by the complex-damped model.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7374
Author(s):  
Orest Lozynskyy ◽  
Damian Mazur ◽  
Yaroslav Marushchak ◽  
Bogdan Kwiatkowski ◽  
Andriy Lozynskyy ◽  
...  

The article presents the creation of characteristic polynomials on the basis of fractional powers j of dynamic systems and problems related to the determination of the stability intervals of such systems.


Author(s):  
E. Naranjo

Equilibrium vesicles, those which are the stable form of aggregation and form spontaneously on mixing surfactant with water, have never been demonstrated in single component bilayers and only rarely in lipid or surfactant mixtures. Designing a simple and general method for producing spontaneous and stable vesicles depends on a better understanding of the thermodynamics of aggregation, the interplay of intermolecular forces in surfactants, and an efficient way of doing structural characterization in dynamic systems.


2010 ◽  
Vol 19 (3) ◽  
pp. 68-74 ◽  
Author(s):  
Catherine S. Shaker

Current research on feeding outcomes after discharge from the neonatal intensive care unit (NICU) suggests a need to critically look at the early underpinnings of persistent feeding problems in extremely preterm infants. Concepts of dynamic systems theory and sensitive care-giving are used to describe the specialized needs of this fragile population related to the emergence of safe and successful feeding and swallowing. Focusing on the infant as a co-regulatory partner and embracing a framework of an infant-driven, versus volume-driven, feeding approach are highlighted as best supporting the preterm infant's developmental strivings and long-term well-being.


2001 ◽  
Vol 6 (3) ◽  
pp. 172-176 ◽  
Author(s):  
Lawrence A. Pervin

David Magnusson has been the most articulate spokesperson for a holistic, systems approach to personality. This paper considers three concepts relevant to a dynamic systems approach to personality: dynamics, systems, and levels. Some of the history of a dynamic view is traced, leading to an emphasis on the need for stressing the interplay among goals. Concepts such as multidetermination, equipotentiality, and equifinality are shown to be important aspects of a systems approach. Finally, attention is drawn to the question of levels of description, analysis, and explanation in a theory of personality. The importance of the issue is emphasized in relation to recent advances in our understanding of biological processes. Integrating such advances into a theory of personality while avoiding the danger of reductionism is a challenge for the future.


1996 ◽  
Vol 41 (10) ◽  
pp. 1002-1003
Author(s):  
Esther Thelen
Keyword(s):  

2017 ◽  
Vol 64 (6) ◽  
pp. 616-625 ◽  
Author(s):  
Jonathan E. Butner ◽  
Carlene Deits-Lebehn ◽  
Alexander O. Crenshaw ◽  
Travis J. Wiltshire ◽  
Nicholas S. Perry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document