Wheel Slip Regulation Using An Optimal Reference Slip Estimation Framework

Author(s):  
Pavel Vijay Gaurkar ◽  
Karthik Ramakrushnan ◽  
Akhil Challa ◽  
Shankar C. Subramanian ◽  
Gunasekaran Vivekanandan ◽  
...  
Keyword(s):  
1975 ◽  
Vol 3 (4) ◽  
pp. 215-234 ◽  
Author(s):  
A. L. Browne ◽  
D. Whicker ◽  
S. M. Rohde

Abstract An analysis is presented for the action of individual tire tread elements on polished sections of pavement covered by thin fluid films. Tread element flexibility, wheel slip, and time-dependent loading are incorporated. The effect of the lateral expansion of tread elements on groove closure is also studied.


2021 ◽  
Vol 11 (4) ◽  
pp. 1594 ◽  
Author(s):  
Andrea Botta ◽  
Paride Cavallone ◽  
Luigi Tagliavini ◽  
Luca Carbonari ◽  
Carmen Visconte ◽  
...  

In this paper, the effects of wheel slip compensation in trajectory planning for mobile tractor-trailer robot applications are investigated. Firstly, a kinematic model of the proposed robot architecture is marked out, then an experimental campaign is done to identify if it is possible to kinematically compensate trajectories that otherwise would be subject to large lateral slip. Due to the close connection to the experimental data, the results shown are valid only for Epi.q, the prototype that is the main object of this manuscript. Nonetheless, the base concept can be usefully applied to any mobile robot subject to large lateral slip.


Author(s):  
He Xu ◽  
Yan Xu ◽  
Peiyuan Wang ◽  
Hongpeng Yu ◽  
Ozoemena Anthony Ani ◽  
...  

Purpose The purpose of this paper is to explore a novel measurement approach for wheel-terrain contact angle using laser scanning sensors based on near-terrain perception. Laser scanning sensors have rarely been applied to the measurement of wheel-terrain contact angle for wheeled mobile robots (WMRs) in previous studies; however, it is an effective way to measure wheel-terrain contact angle directly with the advantages of simple, fast and high accuracy. Design/methodology/approach First, kinematics model for a WMR moving on rough terrain was developed, taking into consideration wheel slip and wheel-terrain contact angle. Second, the measurement principles of wheel-terrain contact angle using laser scanning sensors was presented, including “rigid wheel - rigid terrain” model and “rigid wheel - deformable terrain” model. Findings In the proposed approach, the measurement of wheel-terrain contact angle using laser scanning sensors was successfully demonstrated. The rationality of the approach was verified by experiments on rigid and sandy terrains with satisfactory results. Originality/value This paper proposes a novel, fast and effective wheel-terrain contact angle measurement approach for WMRs moving on both rigid and deformable terrains, using laser scanning sensors.


2018 ◽  
Vol 2 (2) ◽  
pp. 135-146
Author(s):  
Kada Hartani ◽  
Mohamed Khalfaoui ◽  
Abdelkader Merah ◽  
Norediene Aouadj

Robotica ◽  
2015 ◽  
Vol 35 (2) ◽  
pp. 463-482 ◽  
Author(s):  
Avinash Siravuru ◽  
Suril V. Shah ◽  
K. Madhava Krishna

SUMMARYThis paper discusses the development of an optimal wheel-torque controller for a compliant modular robot. The wheel actuators are the only actively controllable elements in this robot. For this type of robots, wheel-slip could offer a lot of hindrance while traversing on uneven terrains. Therefore, an effective wheel-torque controller is desired that will also improve the wheel-odometry and minimize power consumption. In this work, an optimal wheel-torque controller is proposed that minimizes the traction-to-normal force ratios of all the wheels at every instant of its motion. This ensures that, at every wheel, the least traction force per unit normal force is applied to maintain static stability and desired wheel speed. The lower this is, in comparison to the actual friction coefficient of the wheel-ground interface, the more margin of slip-free motion the robot can have. This formalism best exploits the redundancy offered by a modularly designed robot. This is the key novelty of this work. Extensive numerical and experimental studies were carried out to validate this controller. The robot was tested on four different surfaces and we report an overall average slip reduction of 44% and mean wheel-torque reduction by 16%.


2021 ◽  
Vol 11 (6) ◽  
pp. 2809
Author(s):  
Dongmin Zhang ◽  
Qiang Song ◽  
Guanfeng Wang ◽  
Chonghao Liu

This article proposes a novel longitudinal vehicle speed estimator for snowy roads in extreme conditions (four-wheel slip) based on low-cost wheel speed encoders and a longitudinal acceleration sensor. The tire rotation factor, η, is introduced to reduce the deviation between the rotation tire radius and the manufacturer’s marked tire radius. The Local Vehicle Speed Estimator is defined to eliminate longitudinal vehicle speed estimation error. It improves the tire slip accuracy of four-wheel slip, even with a high slip rate. The final vehicle speed is estimated using two fuzzy control strategies that use vehicle speed estimates from speed encoders and a longitudinal acceleration sensor. Experimental and simulation results confirm the algorithm’s validity for estimating longitudinal vehicle speed for four-wheel slip in snowy road conditions.


Sign in / Sign up

Export Citation Format

Share Document