A method to size the stack and the battery of a fuel cell vehicle reducing the fuel consumption

Author(s):  
Giuseppe Graber ◽  
Vincenzo Galdi ◽  
Vito Calderaro ◽  
Antonio Piccolo
Author(s):  
Ajay Kumar ◽  
Sachin Mishra ◽  
Brajesh Tripathi ◽  
Pradeep Kumar ◽  
Ish Hunar Sharma

This paper presents design, analysis and development of a highly aerodynamic and a near zero emission single seater three wheeler unfrozen hawk prototype vehicle that is powered by hydrogen fuel cell. The vehicle is designed with a tadpole configuration and gullwing doors to achieve low drag and a streamlined half body. The pressure and velocity distribution with an optimal value of drag coefficient are established using computational fluid dynamic analysis. The hydrogen consumption and heat generated in the fuel cell and brushless direct current motor are analyzed for various cases. The study concluded to show a reduction in power and fuel consumption of designed prototype vehicle to give better fuel economy and overall performance.


2006 ◽  
Vol 4 (2) ◽  
pp. 167-175 ◽  
Author(s):  
Olle Sundström ◽  
Anna Stefanopoulou

This study explores different hybridization levels of a midsized vehicle powered by a polymer electrolyte membrane fuel cell stack. The energy buffer considered is a lead-acid-type battery. The effects of the battery size on the overall energy losses for different drive cycles are determined when dynamic programming determines the optimal current drawn from the fuel cell system. The different hybridization levels are explored for two cases: (i) when the battery is only used to decouple the fuel cell system from the voltage and current demands from the traction motor to allow the fuel cell system to operate as close to optimally as possible and (ii) when regenerative braking is included in the vehicle with different efficiencies. The optimal power-split policies are analyzed to quantify all the energy losses and their paths in an effort to clarify the hybridization needs for a fuel cell vehicle. Results show that without any regenerative braking, hybridization will not decrease fuel consumption unless the vehicle is driving in a mild drive cycle (city drive with low speeds). However, when the efficiency of the regenerative braking increases, the fuel consumption (total energy losses) can be significantly lowered by choosing an optimal battery size.


2021 ◽  
pp. 146808742110590
Author(s):  
Jules Sery ◽  
Pierre Leduc

Hydrogen fuel consumption measuring methodologies of a fuel cell vehicle without modifying the fuel path has been tested and benchmarked. In this work, they are applied to a Hyundai Nexo fuel cell electric vehicle driving different mission profiles on a chassis dynamometer. Three methods respectively based on hydrogen tank pressure, tailpipe oxygen concentration, and IR-shared (infrared) tank data are compared to the reference method relying on fuel cell current measurements. In addition to the hydrogen fuel consumption results, the installed electrical measuring equipment made possible to yield the fuel cell efficiency map at both stack and system levels as well as the energy consumption of its balance-of-plant (BoP) components during steady-state operation. A maximum steady-state efficiency of 66.8% is reported along with a rated system power of 82 kWe involving a 9.1-kWe power consumption for the electric compressor. It is shown that the compressor and the 12-V accessories are the most energy consuming devices among the BoP components accounting for 2%–3% of the total electric energy generated by the fuel cell. Furthermore, the behavior of the powertrain system is monitored and discussed during warm-up phases and during a long idling period. Finally, based on non-intrusive temperature measurements, a short analysis is conducted about the temperature impact on the fuel cell efficiency.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 604
Author(s):  
Nicu Bizon ◽  
Phatiphat Thounthong

A new real-time strategy is proposed in this article to optimize the hydrogen utilization of a fuel cell vehicle, by switching the control references of fueling regulators, based on load-following. The advantages of this strategy are discussed and compared, with advanced strategies that also use the aforementioned load-following mode regulator of fueling controllers, but in the entire loading range, respectively, with a benchmark strategy utilizing the static feed-forward control of fueling controllers. Additionally, the advantages of energy-storage function in a charge-sustained mode, such as a longer service life and reduced size due to the implementation of the proposed switching strategy, are presented for the dynamic profiles across the entire load range. The optimization function was designed to improve the fuel economy by adding to the total power of the fuel utilization efficiency (in a weighted way). The proposed optimization loop will seek the reference value to control the fueling regulator in real-time, which is not regulated by a load-following approach. The best switching threshold between the high and low loading scales were obtained using a sensitivity analysis carried out for both fixed and dynamic loads. The results obtained were promising—(1) the fuel economy was two-times higher than the advanced strategies mentioned above; and (2) the total fuel consumption was 13% lower than the static feed-forward strategy. This study opens new research directions for fuel cell vehicles, such as for obtaining the best fuel economy or estimating fuel consumption up to the first refueling station on the planned road.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 393
Author(s):  
Zhemin Du ◽  
Congmin Liu ◽  
Junxiang Zhai ◽  
Xiuying Guo ◽  
Yalin Xiong ◽  
...  

Nowadays, we face a series of global challenges, including the growing depletion of fossil energy, environmental pollution, and global warming. The replacement of coal, petroleum, and natural gas by secondary energy resources is vital for sustainable development. Hydrogen (H2) energy is considered the ultimate energy in the 21st century because of its diverse sources, cleanliness, low carbon emission, flexibility, and high efficiency. H2 fuel cell vehicles are commonly the end-point application of H2 energy. Owing to their zero carbon emission, they are gradually replacing traditional vehicles powered by fossil fuel. As the H2 fuel cell vehicle industry rapidly develops, H2 fuel supply, especially H2 quality, attracts increasing attention. Compared with H2 for industrial use, the H2 purity requirements for fuel cells are not high. Still, the impurity content is strictly controlled since even a low amount of some impurities may irreversibly damage fuel cells’ performance and running life. This paper reviews different versions of current standards concerning H2 for fuel cell vehicles in China and abroad. Furthermore, we analyze the causes and developing trends for the changes in these standards in detail. On the other hand, according to characteristics of H2 for fuel cell vehicles, standard H2 purification technologies, such as pressure swing adsorption (PSA), membrane separation and metal hydride separation, were analyzed, and the latest research progress was reviewed.


Sign in / Sign up

Export Citation Format

Share Document