Experimental Investigation of a Solar Greenhouse Dryer Using Fiber Plastic Cover to Reduce the Moisture Content of Refuse Derived Fuel in an Indonesian Cement Industry

Author(s):  
Q. A. M. Okta Arifianti ◽  
M. R. Abidin ◽  
E. F. Nugrahani ◽  
K. K. Ummatin
2019 ◽  
Vol 12 (01) ◽  
pp. 307-315 ◽  
Author(s):  
Windi Zamrudy ◽  
Sandra Santosa ◽  
Arief Budiono ◽  
Eko Naryono

1995 ◽  
Vol 48 (10) ◽  
pp. 684-688 ◽  
Author(s):  
M. Kowal ◽  
S. J. Kowalski

It is possible to observe a significant difference in swelling strains of unstressed and stressed water soaked wood. This paper points out that the swelling strains depend not only on the magnitude of stress in wood but also on the kind of stress state. Our main aim is to investigate the relation between various states of stress and the swelling strains in water soaked wood. Three different states of stress are studied: tension in the radial direction, compression in the tangential direction with respect to the growth rings, and both these stresses acting together (biaxial stress). Some weighty conclusions follow from the investigations. The main one is that, although the mechanical strains alone are negligibly small compared to the free swelling strains, the coupled mechanical-swelling strains, being a function of the stress state and the moisture content, have a great significance in total strains of water soaked wood.


1994 ◽  
Vol 116 (3) ◽  
pp. 186-193 ◽  
Author(s):  
A. Dadkhah-Nikoo ◽  
D. J. Bushnell

This paper presents the results from an experimental investigation of wood combustion. Variables chosen for investigation are fuel moisture content, fuel particle size, excess air, fraction and temperature of under-fire air. Influence of the off-design (part load) operation of the combustion unit on combustion efficiency and particulate emission is also investigated. Data recorded during the experiments include the composition and temperature of the combustion products, particulate emissions, and combustible fraction of the particulate. Based on the experimental data, a linear regression model was developed to investigate the variables affecting the combustion process. A computer model was used to calculate the temperature and composition of the combustion products under adiabatic conditions. Results of the adiabatic model and the experimental regression analysis are compared and discussed. According to the results presented, it is concluded that the combustion efficiency and particulate emissions are most influenced by the factors that increase the volume of the combustion products in the combustion chamber. These variables include excess air, moisture content of the fuel, and the combustion air temperature. Fuel particle size and the fraction of under-fire air did not significantly affect the combustion efficiency and particulate emissions. It is also concluded that the off-design (part-load) operation of the combustion unit, results in higher particulate emissions and lower combustion efficiency.


Author(s):  
Q. Feng ◽  
W. L. Cong ◽  
M. Zhang ◽  
Z. J. Pei ◽  
C. Z. Ren

As one of the near-to-mid-term alternatives to fossil fuels, cellulosic biofuels can cut greenhouse gas emissions while continuing to meet liquid transportation fuel needs. By processing cellulosic biomass into pellets, density and handling efficiency of cellulosic feedstocks will be improved, resulting in a reduction in transportation and handling costs in biofuel manufacturing. Temperature of biomass during the pelleting process can affect the quality of the pellet. But effects of pelleting variables on biomass temperature during ultrasonic vibration-assisted (UV-A) pelleting are still unknown. This paper reports an experimental investigation on temperature of biomass in UV-A pelleting. It studies the effects of moisture content of the biomass and pelleting variables (ultrasonic power, tool travel distance, and feedrate). The results will be helpful in understanding the effects of ultrasonic vibration on biomass temperature, compaction mechanism, and biofuel conversion.


Sign in / Sign up

Export Citation Format

Share Document