An Experimental Study on Temperature in Ultrasonic Vibration-Assisted Pelleting of Cellulosic Biomass

Author(s):  
Q. Feng ◽  
W. L. Cong ◽  
M. Zhang ◽  
Z. J. Pei ◽  
C. Z. Ren

As one of the near-to-mid-term alternatives to fossil fuels, cellulosic biofuels can cut greenhouse gas emissions while continuing to meet liquid transportation fuel needs. By processing cellulosic biomass into pellets, density and handling efficiency of cellulosic feedstocks will be improved, resulting in a reduction in transportation and handling costs in biofuel manufacturing. Temperature of biomass during the pelleting process can affect the quality of the pellet. But effects of pelleting variables on biomass temperature during ultrasonic vibration-assisted (UV-A) pelleting are still unknown. This paper reports an experimental investigation on temperature of biomass in UV-A pelleting. It studies the effects of moisture content of the biomass and pelleting variables (ultrasonic power, tool travel distance, and feedrate). The results will be helpful in understanding the effects of ultrasonic vibration on biomass temperature, compaction mechanism, and biofuel conversion.

Author(s):  
Pengfei Zhang ◽  
Timothy Deines ◽  
Daniel Nottingham ◽  
Z. J. Pei ◽  
Donghai Wang ◽  
...  

Increasing demands and concerns for the reliable supply of liquid transportation fuels make it important to find alternative sources to petroleum based fuels. One such alternative is cellulosic biofuels. However, several technical barriers have hindered large-scale, cost-effective manufacturing of cellulosic biofuels, such as the low density of cellulosic feedstocks (causing high transportation and storage costs) and the low efficiency of enzymatic hydrolysis process (causing longer processing time and low sugar yield). Ultrasonic vibration-assisted (UV-A) pelleting can increase the density of cellulosic materials by compressing them into pellets. UV-A pelleting can also increase the sugar yield of cellulosic biomass materials in hydrolysis. At present, the effects of process variables in UV-A pelleting on pellet quality (density, durability, and stability) and sugar yield have not been adequately investigated. This paper reports an experimental investigation on UV-A pelleting of wheat straw. A 24 factorial design is employed to evaluate the effects of process variables (moisture content, particle size, pelleting pressure, and ultrasonic power) on output variables (pellet density, durability, stability, and sugar yield).


Author(s):  
Xiaoxu Song ◽  
Meng Zhang ◽  
Z. J. Pei ◽  
Timothy Deines

Cellulosic biomass is an important source for making biofuels. However, there are several barriers to cost-effective manufacturing of biofuels using cellulosic biomass. One such barrier is related to the high transportation cost due to the low density of cellulosic biomass. Pelleting of cellulosic biomass is one way to increase its density. This paper reports an experimental study on ultrasonic vibration-assisted pelleting of cellulosic biomass. The study was focused on the effects of moisture content (MC) on pellet density of three kinds of cellulosic biomass (wheat straw, switchgrass, and sorghum). The experimental results show that sorghum has the highest density with three levels of MC among these biomass materials. The highest density was found with sorghum of 20% MC.


Author(s):  
Qi Zhang ◽  
Pengfei Zhang ◽  
Z. J. Pei ◽  
Graham Pritchett ◽  
Meng Zhang ◽  
...  

Cellulosic biomass is abundantly available in the nature. It is an attractive feedstock to make alternative fuels to petroleum-based transportation fuels. Because of low bulk density and irregular shape, raw biomass materials are difficult to handle, transport, and store. Pelleting can increase the density of cellulosic biomass. Pellets can be easily handled, resulting in reducing their transportation and storage costs. Ultrasonic vibration-assisted (UV-A) pelleting is a new pelleting method. Moisture content, particle size, pelleting pressure, and ultrasonic power are four important input parameters affecting pellet quality and sugar yield (proportional to biofuel yield). However, their effects on power consumption in UV-A pelleting have not been adequately investigated. Since power consumption directly affects ethanol manufacturing costs, it is desirable to understand how input parameters affect power consumption. This paper reports an experimental investigation of power consumption in UV-A pelleting. A 24 factorial design is employed to evaluate the effects of four input parameters (moisture content, particle size, pelleting pressure, and ultrasonic power) on power consumption in UV-A pelleting. Results show that three input parameters (moisture content, particle size, and ultrasonic power) significantly affect power consumption. Higher moisture content, lower ultrasonic power, and larger particle size result in higher power consumption. Only one interaction of two parameters is significant, i.e. with the increase of pelleting pressure, power consumption will increase at the high level of particle size while decrease at the low level of particle size.


Author(s):  
Qi Zhang ◽  
P. F. Zhang ◽  
Timothy Deines ◽  
Z. J. Pei ◽  
Donghai Wang ◽  
...  

Cellulosic biofuels can be used to replace traditional liquid transportation fuels. Cellulosic biomass is feedstock in manufacturing of cellulosic biofuels. However, the low density of cellulosic biomass feedstock hinders large-scale and cost-effective manufacturing of cellulosic biofuels. Another bottleneck factor in manufacturing of cellulosic biofuels is the low efficiency of the enzymatic hydrolysis of cellulosic biomass materials resulting in a low sugar yield. Ultrasonic vibration-assisted (UV-A) pelleting can increase the density of cellulosic biomass feedstocks via combined effects of mechanical compression and ultrasonic vibration of the tool on the cellulosic biomass. Meanwhile ultrasonic vibration may act as a beneficial pretreatment for enzymatic hydrolysis, which can possibly increase the efficiency of hydrolysis and obtain a higher sugar yield. The pressure and the ultrasonic power are important parameters in UV-A pelleting. Their effects on pellet quality (density, durability, and stability) and sugar yield (after hydrolysis) are experimentally investigated.


Author(s):  
Qi Zhang ◽  
Lin Heng ◽  
Jiping Zhou ◽  
Zhichao Li

Cellulosic ethanol can be used as a sustainable alternative transportation fuel. A major obstacle to restrict large-scale cellulosic ethanol manufacturing is low bulk density of cellulosic biomass that increases costs during transportation, storage and application of biomass. Biomass pelleting can significantly increase density of biomass. Pellets with high density can be handled, transported, stored and utilized easily. Ring-die pelleting, a traditional pelleting method, is widely used in biomass densification industry. This paper reported an experimental study to compare pellet quality (such as equilibrium moisture content, density, and durability) and microstructure of corn stover processed by a ring-die pellet mill with three different die sizes. Results showed that round and bigger die (32 mm instead of 9 mm) results in higher pellet density, durability, and lower equilibrium moisture content.


2013 ◽  
Vol 805-806 ◽  
pp. 151-155
Author(s):  
Kang Qi Fan ◽  
Yong Jun Tang ◽  
Yang Fang

Increasing concerns about reliable supplies and envi­ronmental consequences of petroleum-based fuels have made it important to develop sustainable green sources for liquid transportation fuels. One such source is cellulosic biomass. However, high costs associated with transportation and storage of low-density cellulosic biomass has hindered large-scale, cost-effective manufacturing of cellulosic biofuels. Ultrasonic vibration-assisted (UV-A) pelleting can increase biomass density, improve storability, and reduce transportation costs. This paper reviews the state of the art of this technique, covering the effects of different process parameters on pellet quality, pellet charring, pellet crack, and sugar yield. It can be concluded that pellet density increases with an increase in ultrasonic power and pelleting pressure, and with a decrease in biomass moisture content and particle size. However, large ultrasonic power may lead to the charring of cellulosic biomass, which adversely affects the conversion of cellulosic biomass to ethanol. In addition, some problems associated with UV-A pelletingof cellulosic biomass are proposed.


2012 ◽  
Vol 151 ◽  
pp. 245-249 ◽  
Author(s):  
Yong Jun Tang ◽  
Chun Mu Chen ◽  
Guan Wang

Cellulosic biofuels have been proposed to replace part of traditional liquid transportation fuels. Cellulosic biomass is the feedstock in cellulosic biofuel manufacturing. Costs associated with collection and transportation of cellulosic biomass account for more than 80 percent of the feedstock cost. By processing cellulosic biomass into pellets, density and handling efficiencies of cellulosic feedstock can be improved, resulting in reduction of transportation and handling costs. The pellet temperature is one of the most important parameter in Ultrasonic Vibration (UV-A) pelleting. There is very few literature on the pellet temperature of UV-A pelleting. This paper mainly studied how to on-line measure the pelleting temperature, also, the detailed temperature characteristics of the pellet was obtained. The results are valuable for selecting suitable pelleting parameters and controlling the quality of pellet in UV-A pelleting. Also, the accurate measurement of the pellet temperature is helpful to understand pelleting mechanism, charring, and durability issues.


Author(s):  
Meng Zhang ◽  
Xiaoxu Song ◽  
P. F. Zhang ◽  
Q. Zhang ◽  
Z. J. Pei ◽  
...  

Cellulosic biofuels can reduce greenhouse gas emissions and the nation’s dependence on foreign oil. In order to convert cellulosic biomass into biofuels, size reduction of biomass is a necessary step. Most related studies in the literature claimed that smaller particles produced higher sugar yields. However, some researchers reported that this claim was not always true. The literature does not have satisfactory explanations for the inconsistence. This paper presents an experimental study on size reduction of poplar wood using a metal cutting process (milling). The results provided one explanation for this inconsistence. It was found for the first time that milling orientation had a strong effect on poplar wood sugar yield. Although smaller poplar particles had a higher sugar yield when they were milled from the same orientation, this trend did not exist for particles milled from different orientations.


2012 ◽  
Vol 174-177 ◽  
pp. 921-924
Author(s):  
Xun Zhong Zhang ◽  
Ping Liu ◽  
Bin Jia

Through experiments based on three different graduations of regenerating concrete,the paper analyzes the parameters variation characteristics, such as performance of the density, water absorption, moisture content, packing density and crushed indicators.The research shows that Pressure loss of the quality of the regenerating concrete is proportional with loading force. What’s more, it can also reflect the own strength grade of aggregate in a more direct way and should be a new method to assess aggregate strength. Simultaneously, it gives us a relatively superior graduation and provides reference value for guiding actual project.


Author(s):  
Qi Zhang ◽  
Pengfei Zhang ◽  
Shing Chang ◽  
Z. J. Pei ◽  
Donghai Wang

Cellulosic ethanol is an attractive alternative to petroleum-based liquid transportation fuels. However, low density of cellulosic biomass (the feedstock for cellulosic ethanol) causes high costs in biomass logistics and hinders large-scale and cost-effective manufacturing of cellulosic ethanol. Ultrasonic vibration-assisted (UV-A) pelleting can significantly increase the density of cellulosic biomass by compressing raw cellulosic biomass into pellets. Pellet density and durability are two important physical properties of a pellet. In this study, a multiple response surface methodology was employed to optimize the input variables (pelleting time, pressure, and ultrasonic power) in UV-A pelleting of sorghum stalks for simultaneously maximized pellet density and durability. Second-order polynomial models were used to fit the experimental results. Main and interaction effects of the input variables on pellet density and durability were also investigated.


Sign in / Sign up

Export Citation Format

Share Document