Formulation of single event burnout failure rate for high voltage devices in satellite electrical power system

Author(s):  
Yuji Shiba ◽  
Erdenebaatar Dashdondog ◽  
Masaki Sudo ◽  
Ichiro Omura
2013 ◽  
Vol 441 ◽  
pp. 318-323
Author(s):  
Wei Chen ◽  
Shao Ping Zhou ◽  
He Chen ◽  
Xiao Long Luo ◽  
You Ping Fan

High voltage substation is the junction station of electrical power system. In order to conduct lightning over-voltage simulation and analysation of couple of substations rapidly and intuitively, a serialization supposed simulation program of substation is developed based on the research of EMTP kernel and data format. Model of impulse grounding resistance and improved leader progression is included in the program, which enhance the accuracy as much as possible and satisfying the demand for emulation of different type and voltage level. Through the simulation of some 500kV high voltage substation, the influence to lightning over-voltage of different system operating plan and lightning strike spots is analyzed, which verifies the validity and convenience of the program.


Author(s):  
Neetu Baghelkar ◽  
Abhishek Dubey

In the high voltage (HV) electrical power system, a variety of solid, liquid and gaseous materials are used for insulation purposes to protect incipient faults within the HV power equipment. Among these, solid insulation is widely used for high voltage equipment in high voltage power systems. Most insulation materials are not perfect in all respects and always contain some impurities. In high voltage (HV) electrical equipment, the quality of the insulation plays a very important role. Continued growth in the power system has provided the opportunity to protect equipment for healthy operation throughout its useful life.


Author(s):  
Jesus Gonzalez-Llorente Gonzalez-Llorente ◽  
Aleksander Andrzej Lidtke ◽  
Ronald Hurtado ◽  
Kei-Ichi Okuyama

Nowadays, it has become possible for universities and new businesses to launch satellites of reduced size and cost fulfilling viable missions. Nevertheless, there is still a considerable failure rate that reduces the expected lifetime of these spacecraft. One of the main causes of failure is the power system. Redundancy is one of the main options to enhance its lifetime and lower the failure rate. However, cost, mass, and complexity increase due to redundancy, making it more difficult to complete the projects. Thus, it is necessary to enhance the lifetime of power systems while keeping the development process simple and fast. This paper proposes two configurations of an electrical power system with duplicate components: single-bus configuration has been designed for a nanosatellite not yet launched and dual-bus configuration for a micro deep-space probe launched into a heliocentric orbit. The design and implementation of two dual electrical power systems are described; measurements and on-orbit data of the electrical power system of the micro deep-space probe are also presented, demonstrating that the dual-bus electrical power system can be successfully used in spacecraft. Lastly, conclusions regarding the redundancy considerations for small satellite electrical power systems are drawn based on these two examples.


Author(s):  
Iyappan Murugesan ◽  
Karpagam Sathish

: This paper presents electrical power system comprises many complex and interrelating elements that are susceptible to the disturbance or electrical fault. The faults in electrical power system transmission line (TL) are detected and classified. But, the existing techniques like artificial neural network (ANN) failed to improve the Fault Detection (FD) performance during transmission and distribution. In order to reduce the power loss rate (PLR), Daubechies Wavelet Transform based Gradient Ascent Deep Neural Learning (DWT-GADNL) Technique is introduced for FDin electrical power sub-station. DWT-GADNL Technique comprises three step, normalization, feature extraction and FD through optimization. Initially sample power TL signal is taken. After that in first step, min-max normalization process is carried out to estimate the various rated values of transmission lines. Then in second step, Daubechies Wavelet Transform (DWT) is employed for decomposition of normalized TLsignal to different components for feature extraction with higher accuracy. Finally in third step, Gradient Ascent Deep Neural Learning is an optimization process for detecting the local maximum (i.e., fault) from the extracted values with help of error function and weight value. When maximum error with low weight value is identified, the fault is detected with lesser time consumption. DWT-GADNL Technique is measured with PLR, feature extraction accuracy (FEA), and fault detection time (FDT). The simulation result shows that DWT-GADNL Technique is able to improve the performance of FEA and reduces FDT and PLR during the transmission and distribution when compared to state-of-the-art works.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2699
Author(s):  
Marceli N. Gonçalves ◽  
Marcelo M. Werneck

Optical Current Transformers (OCTs) and Optical Voltage Transformers (OVTs) are an alternative to the conventional transformers for protection and metering purposes with a much smaller footprint and weight. Their advantages were widely discussed in scientific and technical literature and commercial applications based on the well-known Faraday and Pockels effect. However, the literature is still scarce in studies evaluating the use of optical transformers for power quality purposes, an important issue of power system designed to analyze the various phenomena that cause power quality disturbances. In this paper, we constructed a temperature-independent prototype of an optical voltage transformer based on fiber Bragg grating (FBG) and piezoelectric ceramics (PZT), adequate to be used in field surveys at 13.8 kV distribution lines. The OVT was tested under several disturbances defined in IEEE standards that can occur in the electrical power system, especially short-duration voltage variations such as SAG, SWELL, and INTERRUPTION. The results demonstrated that the proposed OVT presents a dynamic response capable of satisfactorily measuring such disturbances and that it can be used as a power quality monitor for a 13.8 kV distribution system. Test on the proposed system concluded that it was capable to reproduce up to the 41st harmonic without significative distortion and impulsive surges up to 2.5 kHz. As an advantage, when compared with conventional systems to monitor power quality, the prototype can be remote-monitored, and therefore, be installed at strategic locations on distribution lines to be monitored kilometers away, without the need to be electrically powered.


Author(s):  
Diego A. Monroy-Ortiz ◽  
Sergio A. Dorado-Rojas ◽  
Eduardo Mojica-Nava ◽  
Sergio Rivera

Abstract This article presents a comparison between two different methods to perform model reduction of an Electrical Power System (EPS). The first is the well-known Kron Reduction Method (KRM) that is used to remove the interior nodes (also known as internal, passive, or load nodes) of an EPS. This method computes the Schur complement of the primitive admittance matrix of an EPS to obtain a reduced model that preserves the information of the system as seen from to the generation nodes. Since the primitive admittance matrix is equivalent to the Laplacian of a graph that represents the interconnections between the nodes of an EPS, this procedure is also significant from the perspective of graph theory. On the other hand, the second procedure based on Power Transfer Distribution Factors (PTDF) uses approximations of DC power flows to define regions to be reduced within the system. In this study, both techniques were applied to obtain reduced-order models of two test beds: a 14-node IEEE system and the Colombian power system (1116 buses), in order to test scalability. In analyzing the reduction of the test beds, the characteristics of each method were classified and compiled in order to know its advantages depending on the type of application. Finally, it was found that the PTDF technique is more robust in terms of the definition of power transfer in congestion zones, while the KRM method may be more accurate.


Sign in / Sign up

Export Citation Format

Share Document