Wetlands as a nature-based coastal defense: a numerical modeling and field data integration approach to quantify storm surge attenuation for the Mid-Atlantic region

Author(s):  
Jana Haddad ◽  
Anne-Eleonore Paquier ◽  
Seth Lawler ◽  
Celso M. Ferreira
2021 ◽  
Vol 9 (2) ◽  
pp. 147
Author(s):  
James A. Pollard ◽  
Elizabeth K. Christie ◽  
Susan M. Brooks ◽  
Tom Spencer

Gravel barriers represent physiographic, hydrographic, sedimentary, and ecological boundaries between inshore and open marine offshore environments, where they provide numerous important functions. The morphosedimentary features of gravel barriers (e.g., steep, energy reflective form) have led to their characterization as effective coastal defense features during extreme hydrodynamic conditions. Consequently, gravel barriers have often been intensively managed to enhance coastal defense functions. The Blakeney Point Barrier System (BPBS), U.K., is one such example, which offers the opportunity to investigate the impact of alternative management regimes under extreme hydrodynamic conditions. The BPBS was actively re-profiled along its eastern section from the 1950s to the winter of 2005, whilst undergoing no active intervention along its western section. Combining an analysis of remotely sensed elevation datasets with numerical storm surge modeling, this paper finds that interventionist management introduces systemic differences in barrier morphological characteristics. Overly steepened barrier sections experience greater wave run-up extents during storm surge conditions, leading to more extreme morphological changes and landward barrier retreat. Furthermore, while high, steep barriers can be highly effective at preventing landward flooding, in cases where overwashing does occur, the resultant landward overtopping volume is typically higher than would be the case for a relatively lower crested barrier with a lower angled seaward slope. There is a growing preference within coastal risk management for less interventionist management regimes, incorporating natural processes. However, restoring natural processes does not immediately or inevitably result in a reduction in coastal risk. This paper contributes practical insights regarding the time taken for a previously managed barrier to relax to a more natural state, intermediary morphological states, and associated landward water flows during extreme events, all of which should be considered if gravel barriers are to be usefully integrated into broader risk management strategies.


2020 ◽  
Author(s):  
Sepidehalsadat Hendi ◽  
Mostafa Gorjian ◽  
Gilles Bellefleur ◽  
Christopher D. Hawkes ◽  
Don White

Abstract. Fiber optic sensing technology has recently become popular for oil and gas, mining, geotechnical engineering, and hydrogeology applications. With a successful track record in many applications, distributed acoustic sensing using straight fiber optic cables has become a method of choice for seismic studies. However, distributed acoustic sensing using straight fiber optic cables is not able to detect off-axial strain, hence a helically wound cable design was introduced to overcome this limitation. The helically wound cable field data in New Afton deposit showed that the quality of the data is tightly dependent on the incident angle (the angle between the ray and normal vector of the surface) and surrounding media. We introduce a new analytical two-dimensional approach to determine the dynamic strain of a helically wound cable in terms of incident angle in response to elastic plane waves propagating through multilayered media. The method can be used to quickly and efficiently assess the effects of various materials surrounding a helically wound cable. Results from the proposed analytical model are compared with results from numerical modeling obtained with COMSOL Multiphysics, for scenarios corresponding to a real installation of helically wound cable deployed underground at the New Afton mine in British Columbia, Canada. Results from the analytical model are consistent with numerical modeling results. Our modeling results demonstrate the effects of cement quality, and casing installment on the quality of the helically-wound cable response. Numerical modeling results and field data suggest that, even if reasonably effective coupling achieved, the soft nature of the rocks in these intervals would result in low fiber strains for the HWC. The proposed numerical modeling workflow would be applied for more complicated scenarios (e.g., non-linear material constitutive behaviour, and the effects of pore fluids). The results of this paper can be used as a guideline for analyzing the effect of surrounding media and incident angle on the response of helically wound cable, optimizing the installation of helically wound cable in various conditions, and to validate boundary conditions of 3-D numerical model built for analyzing complex scenarios.


2016 ◽  
Vol 25 (08) ◽  
pp. 1650086
Author(s):  
Yuelong Li ◽  
Jigang Wu ◽  
Yawen Chen ◽  
Jason Mair ◽  
David Eyers ◽  
...  

Performance monitoring counters (PMCs) are of great value to monitor the status of processors and their further analysis and modeling. In this paper, we explore a novel problem called PMC integration, i.e., how to combine a group of PMCs which are collected asynchronously together. It is well known that, due to hardware constraints, the number of PMCs that can be measured concurrently is strictly limited. It means we cannot directly acquire all the phenomenon features that are related with the system performance. Clearly, this source raw data shortage is extremely frustrating to PMCs based analysis and modeling tasks, such as PMCs based power estimation. To deal with this problem, we introduce a neighboring interval power values based PMC data integration approach. Based on the activity similarity of easily collected power dissipation values, the proposed approach can automatically combine distinct categories of PMC data together and hence realize the recovery of intact raw PMC data. In addition, the significance and effectiveness of the proposed approach are experimentally verified on a common task, the PMCs based power consumption modeling.


Author(s):  
Arthur Souza ◽  
Jorge Pereira ◽  
Juliana Oliveira ◽  
Claudio Trindade ◽  
Everton Cavalcante ◽  
...  

Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 224
Author(s):  
Mihaela Muntean ◽  
Claudiu Brândaş ◽  
Tanita Cîrstea

An Application-to-Application integration framework in the cloud environment is proposed. The methodological demarche is developed using a data symmetry approach. Implementation aspects of integration considered the Open Data Protocol (OData) service as an integrator. An important issue in the cloud environment is to integrate and ensure the quality of transferred and processed data. An efficient way of ensuring the completeness and integrity of data transferred between different applications and systems is the symmetry of data integration. With these considerations, the integration of SAP Hybris Cloud for Customer with S/4 HANA Cloud was implemented.


Sign in / Sign up

Export Citation Format

Share Document