scholarly journals Kinetic Investigations of Phaseformation Processes in the BaO-Al2O3-Fe2O3 System

2010 ◽  
Vol 4 (2) ◽  
pp. 91-93
Author(s):  
Nikolay Iloukha ◽  
◽  
Zoya Barsova ◽  
Irina Cwhanovskaya ◽  
Valentina Timofeeva ◽  
...  

The kinetic investigations of phase formation processes in the mixture which contains BaO, Al2O3, Fe2O3 were carried out. The degree of conversion and the activation energy were calculated, the dependence of the reaction rate and the rate constant on reaction temperature was determined.

1974 ◽  
Vol 29 (6) ◽  
pp. 880-887 ◽  
Author(s):  
P. P. Schmidt

This paper reports a theory of the inner sphere-type electron transfer reaction. Inner sphere reactions, as opposed to the outer sphere variety, require that the solvate or ligand shells surrounding the electron donor and acceptor species undergo considerable change in the course of the electron transfer. In this paper we assume that the electron transfer step takes place in a molecular complex which exists in equilibrium with the reactants. The electron transfer step occurs as a non-radiative charge transfer-type transition. In this manner we treat the charge transfer kinetics, in particular, the evaluation of the reaction rate constant, in the same manner as is usual for non-radiative problems. The analysis leading to the rate constant expression is based on Yamamoto’s general chemical reaction rate theory. The rate constant expressions obtained are quite general, they hold for any degree of strength of coupling between subsystems comprising the entire system. The activation energy, in the Arrhenius form for the rate constant, shows a dependence on the energy (work) of formation of the intermediate charge transfer complex, on vibrational shift energies associated with the molecular motions of the ligands, and on solvent repolarization energies. The activation energy also shows an important dependence on coupling terms which link the vibrations of the molecular inner shell with the polarization states of the (assumed) dielectric continuum which surrounds the charge transfer participants. The approach we take in developing this theory we believe points the way towards the development of a more complete theory capable of accounting for the dynamics of the molecular reorganization leading to the intermediate charge transfer complex as well as accounting for the electron transfer step itself.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4820 ◽  
Author(s):  
Wojciech Kaczmarek ◽  
Jarosław Panasiuk ◽  
Szymon Borys ◽  
Aneta Pobudkowska ◽  
Mikołaj Majsterek

The most common cause of diseases in swimming pools is the lack of sanitary control of water quality; water may contain microbiological and chemical contaminants. Among the people most at risk of infection are children, pregnant women, and immunocompromised people. The origin of the problem is a need to develop a system that can predict the formation of chlorine water disinfection by-products, such as trihalomethanes (THMs). THMs are volatile organic compounds from the group of alkyl halides, carcinogenic, mutagenic, teratogenic, and bioaccumulating. Long-term exposure, even to low concentrations of THM in water and air, may result in damage to the liver, kidneys, thyroid gland, or nervous system. This article focuses on analysis of the kinetics of swimming pool water reaction in analytical device reproducing its circulation on a small scale. The designed and constructed analytical device is based on the SIMATIC S7-1200 PLC driver of SIEMENS Company. The HMI KPT panel of SIEMENS Company enables monitoring the process and control individual elements of device. Value of the reaction rate constant of free chlorine decomposition gives us qualitative information about water quality, it is also strictly connected to the kinetics of the reaction. Based on the experiment results, the value of reaction rate constant was determined as a linear change of the natural logarithm of free chlorine concentration over time. The experimental value of activation energy based on the directional coefficient is equal to 76.0 [kJ×mol−1]. These results indicate that changing water temperature does not cause any changes in the reaction rate, while it still affects the value of the reaction rate constant. Using the analytical device, it is possible to constantly monitor the values of reaction rate constant and activation energy, which can be used to develop a new way to assess pool water quality.


2002 ◽  
Vol 44 (3) ◽  
pp. 557-559 ◽  
Author(s):  
V. A. Davydov ◽  
L. S. Kashevarova ◽  
A. V. Rakhmanina ◽  
V. M. Senyavin ◽  
N. N. Oleinikov ◽  
...  

The increased demand for advanced techniques in anaerobic digestion over the last few years has led to the employment of various pre-treatment methods prior to anaerobic digestion to increase gas production. These pre-treatment methods alter the physical and chemical properties of sludge in order to make it more readily degradable by anaerobic digestion. Although the thermal pre-treatment presents high energy consumption, the main part of this energy to heat can be recovered from the biogas produced in the anaerobic process. In this research a mixture of primary and waste activated sludge was thermally pretreated at 100, 125, 150, 175 and 200 oC in order to determine the reaction kinetics for the increase of soluble organic fraction (expressed as CODs and VFAs). Experimental results proved that the solubilization of sludge is a 1st order reaction with respect to both CODs and VFAs, KCODs (reaction rate constant of CODs solubilization) increased from 4.59*10-3 (min-1) to 7.55*10-3 (min-1) as the temperature increased from 100 to 200 oC, with a reaction activation energy of 7447.21 (J/mole) and frequency factor of 0.051 (min-1), While KVFAs (reaction rate constant of VFAs solubilization) increased from 5.33*10-3 (min-1) to 7.97*10-3 (min-1) for the same increase in temperature, with a reaction activation energy of 5947.22 (J/mole) and frequency factor of 0.0364 (min-1).


2002 ◽  
Vol 56 (9) ◽  
pp. 381-385
Author(s):  
Ljubica Pavlovic ◽  
Zagorka Acimovic-Pavlovic ◽  
Ljubisa Andric ◽  
Aurel Prstic

In order to study the kinetics and mechanism of the reaction, laboratory leaching was carried out with industrially produced gibbsite ?-Al(OH)3 in aqueous solutions containing an excess of sodium hydroxide. The results obtained reaction temperature, duration and base concentration varied. The basic kinetic parameters were determined from: the reaction rate constant k=8.72?107 exp (-74990/RT) and the process activation energy in the range Ea=72.5-96.81 kJ/mol.


2013 ◽  
Vol 864-867 ◽  
pp. 194-200
Author(s):  
Juan Wen ◽  
Chun Xiu Huo ◽  
Bin Zhang

The kinetics of CO2absorption in unloaded aqueous MEA, MDEA, DETA single amine solutions and MEA+DETA blende amine solutions was studied with the amine concentrations of 3.0 kmol/m3and at temperatures ranging between 298K and 338K. A dynamic model of CO2absorption rate on the basis of the static absorption experimental results was established. The reaction rate constant of CO2absorption in blended amine solutions MEA+DETA is , and its activation energy is 32.89KJ/mol.


2012 ◽  
Vol 178-181 ◽  
pp. 450-453 ◽  
Author(s):  
You Zhang ◽  
Zi Chao Wang ◽  
Meng Chun Gao ◽  
Zong Lian She ◽  
Xiao Jing Zhang ◽  
...  

A study on the decolorization of azo dye wastewater by sponge iron was carried out in order to establish a model of decolorization kinetics, and to investigate the effects of particle size of sponge iron, the initial pH of azo dye wastewater and reaction temperature on the reaction rate constant. The results showed that the decolorization processes of azo dye wastewater by sponge iron was first order kinetic reaction, and reaction rate constant presented high value on the condition of small particle size of sponge iron, low initial pH of azo dye wastewater and high reaction temperature.


2010 ◽  
Vol 4 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Triyono Triyono

Arrhenius equation stated that reaction will proceed faster at higher temperature and with lower activation energy (Ea). Many literatures reported that preexponential factor (A) is constant for certain reaction and there is no relation between A and Ea. Experiment on the reaction of isoamylalcohol hydrogenolysis showed that logarithm of A increased linearly with Ea. The result of this investigation suggests that the rate of a process is affected by the number of active centers on the surface of a catalysts, which influences the value of the pre-exponential term in the expression for the rate constant of a reaction. An increase in the number of active centers corresponds to a higher value of A, the active centers would be less effective and is attended by a growth in the value of Ea. Therefore, reaction with lower activation energy will not always has higher reaction rate due to decreasing of Ea.   Keywords: isoamylalcohol hydrogenolysis, preexponential factor, activation  energy.


2011 ◽  
Vol 332-334 ◽  
pp. 467-470
Author(s):  
Porntip Sae Be ◽  
Suesat Jantip ◽  
Sirisin Chum Rum

This study aimed to investigate the influence of NaOH concentration and temperature used for cellulose extraction from sweet-bamboo leaves on the kinetics of the extraction reaction. The NaOH concentration and the temperature used for the extraction were varied and their effect was examined. It was found that the extraction rate was accelerated by either the increase of NaOH concentration or extraction temperature. The NaOH concentration affected the reaction rate constant, k, and the activation energy, E and the order of the reaction, n. Increase of NaOH concentration enhanced the reaction to move forwards, thus reducing the k and E values of the reaction and the order of the reaction, n, was changed. The correlation of the temperature and the NaOH concentration with the k value showed that at the lower NaOH concentration, the temperature influenced on the k value more significantly. The influence of the NaOH concentration on the k value was lessened with increase of the extraction temperature.


2019 ◽  
Vol 292 ◽  
pp. 01063
Author(s):  
Lubomír Macků

An alternative method of determining exothermic reactor model parameters which include first order reaction rate constant is described in this paper. The method is based on known in reactor temperature development and is suitable for processes with changing quality of input substances. This method allows us to evaluate the reaction substances composition change and is also capable of the reaction rate constant (parameters of the Arrhenius equation) determination. Method can be used in exothermic batch or semi- batch reactors running processes based on the first order reaction. An example of such process is given here and the problem is shown on its mathematical model with the help of simulations.


Sign in / Sign up

Export Citation Format

Share Document