scholarly journals Physico-Chemical Peculiarities of Weighted Thermostable Plugging Materials Hydration

2021 ◽  
Vol 15 (4) ◽  
pp. 599-607
Author(s):  
Vitalii Orlovskyi ◽  
◽  
Myroslav Malovanyy ◽  
Volodymyr Biletskyi ◽  
Mykola Sokur ◽  
...  

A new competitive class of plugging compositions (weighted non-shrink plugging materials) has been created using as components a fly ash from thermal power station, a weighting additive and a superplasticizer. X-ray phase analysis identified the composition of new materials formed in the hydration process of the developed plugging compositions. The kinetic curves of the plugging material expansion in a wide temperature range have been obtained. Rational temperature regimes of plugging materials hardening according to the criteria of strength and gas permeability of cement stone have been determined.

2014 ◽  
Vol 12 ◽  
pp. 16-19
Author(s):  
J Temuujin ◽  
A Minjigmaa ◽  
B Davaabal ◽  
Z Ochirbat

Fly ash from 4th thermal power station of Ulaanbaatar city have been characterised by x-ray fluorescence (XRF), x-ray diffractometry (XRD), particle size analyzer, specific surface area measurement (BET) and scanning electron microscope (SEM) observation. It was found that fly ash from Baganuur coal contains over 15 wt.% of calcium oxide (CaO) and could be assigned as class C fly ash, according to the International classification. Specific surface area of this fly ash was 2.75 m2/g and mean particle diameter was 59.5 μm. Zeolitic compounds were synthesised by using mixture of this fly ash and a transition aluminium oxide under hydrothermal treatment at 100, 150 and 200°C temperatures for a different duration. Various zeolitic compounds including Na-faujasite and sodium aluminosilicate were synthesised as reaction products.DOI: http://dx.doi.org/10.5564/mjc.v12i0.164 Mongolian Journal of Chemistry Vol.12 2011: 16-19 


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1267
Author(s):  
David Längauer ◽  
Vladimír Čablík ◽  
Slavomír Hredzák ◽  
Anton Zubrik ◽  
Marek Matik ◽  
...  

Large amounts of coal combustion products (as solid products of thermal power plants) with different chemical and physical properties cause serious environmental problems. Even though coal fly ash is a coal combustion product, it has a wide range of applications (e.g., in construction, metallurgy, chemical production, reclamation etc.). One of its potential uses is in zeolitization to obtain a higher added value of the product. The aim of this paper is to produce a material with sufficient textural properties used, for example, for environmental purposes (an adsorbent) and/or storage material. In practice, the coal fly ash (No. 1 and No. 2) from Czech power plants was firstly characterized in detail (X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX), particle size measurement, and textural analysis), and then it was hydrothermally treated to synthetize zeolites. Different concentrations of NaOH, LiCl, Al2O3, and aqueous glass; different temperature effects (90–120 °C); and different process lengths (6–48 h) were studied. Furthermore, most of the experiments were supplemented with a crystallization phase that was run for 16 h at 50 °C. After qualitative product analysis (SEM-EDX, XRD, and textural analytics), quantitative XRD evaluation with an internal standard was used for zeolitization process evaluation. Sodalite (SOD), phillipsite (PHI), chabazite (CHA), faujasite-Na (FAU-Na), and faujasite-Ca (FAU-Ca) were obtained as the zeolite phases. The content of these zeolite phases ranged from 2.09 to 43.79%. The best conditions for the zeolite phase formation were as follows: 4 M NaOH, 4 mL 10% LiCl, liquid/solid ratio of 30:1, silica/alumina ratio change from 2:1 to 1:1, temperature of 120 °C, process time of 24 h, and a crystallization phase for 16 h at 50 °C.


2012 ◽  
Vol 9 (4) ◽  
pp. 1788-1795 ◽  
Author(s):  
Olushola S. Ayanda ◽  
Olalekan S. Fatoki ◽  
Folahan A. Adekola ◽  
Bhekumusa J. Ximba

In this study, fly ash was obtained from Matla power station and the physicochemical properties investigated. The fly ash was characterized by x-ray fluorescence, x-ray diffraction, scanning electron microscopy, and inductively coupled plasma mass spectrometry. Surface area, particle size, ash and carbon contents, pH, and point of zero charge were also measured. The results showed that the fly ash is alkaline and consists mainly of mullite (Al6Si2O13) and quartz (SiO2). Highly toxic metals As, Sb, Cd, Cr, and Pb as well as metals that are essential to health in trace amounts were also present. The storage and disposal of coal fly ash can thus lead to the release of leached metals into soils, surface and ground waters, find way into the ecological systems and then cause harmful effect to man and its environments.


2010 ◽  
Vol 13 (1-2) ◽  
pp. 89 ◽  
Author(s):  
L.M. Manоcha ◽  
K.A. Ram ◽  
S.M. Manocha

Fly-ashes are non-combustible mineral residues which are produced from coal in thermal power plants. Four different types of fly ashes were collected from different power station in Gujarat. Characterization through SEM shows that fly ash contains cenosphere i.e. gas bubble containing ceramic particle independent of their bulk density. Floatation technique was used for the separation of cenosphere from fly ash. Two solvents with extremely different densities were used for the separation of cenospheres. All methods gave approximately yield of less than 1 % cenosphere in fly ash. Color of cenospheres varied from gray to almost white and the value of density range from 0.4 – 0.8 g/cc. Further, chemical composition analysis revealed that cenospheres do not contain any high concentration of hazardous elements.


1990 ◽  
Vol 34 ◽  
pp. 387-394 ◽  
Author(s):  
G. J. McCarthy ◽  
J. K. Solem

AbstractA protocol for semi-quantitative XRD analysis of fly ash has been applied to 178 ashes in studies of the typical mineralogy of high-calcium and iow-calcium fly ash, the consistency of fly ash mineralogy from a typical power station, the partitioning of chemical constituents into crystalline phases, and the crystalline phases relevant to the use of fly ash in concrete.


2019 ◽  
Vol 948 ◽  
pp. 26-32
Author(s):  
Galuh Yuliani ◽  
Siska Mutiara ◽  
Agus Setiabudi

The amount of coal combustion byproducts, such as fly ash and bottom ash, generated by coal-based thermal power plants has been increasing at an alarming rate, hence creating huge problems on their treatments and disposals. One of the promising approaches for proper utilization of these byproducts is the conversion of fly ash and bottom ash to zeolites. In this research, zeolites wereprepared from coal bottom ash (RBA) by relatively simple and cheap conversion process using NaOH at 90°C for 24h. Prior to this, the RBA was pretreated using H2SO4 for 4h. The resulted zeolite was characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). XRD results confirmed the formation of sodium aluminosilicate hydrate predominated upon the bottom ash and NaOH 5M ratio of 1:8. XRF results also indicated the domination of Al2O3 and SiO2 in the zeolite composition. FTIR spectra showed characteristic zeolite peaks at 900-1100, 400-500 and 550-660 cm–1forSi-O, Al-O, and Si-O-Al absorptions, respectively. The synthetic zeolite was then applied as an adsorbent for lignin and methylene blue in aqueous solutions. It was found that the Qmax for lignin and methylene blue was16.13 mg/g and 34.13 mg/g, respectively. When fitted using Langmuir and Freundlich isotherm models, the methylene blue adsorption data fitted Langmuir isotherm while those of lignin fitted Freundlich isotherm. It was concluded that the chemical interaction between zeolite and methylene blue may lead to the chemisorption mechanism to prevail.


2018 ◽  
Vol 149 ◽  
pp. 01074 ◽  
Author(s):  
H. Ez-zaki ◽  
A. Diouri ◽  
M. Maher ◽  
A. Aidi ◽  
T. Guedira

Nowadays, the cement industry is the largest emitter of CO2. In 2015, cement production accounts for roughly 8% of global CO2 emissions. In order to reduce this impact, cement plants are working on alternative solutions, for instance, producing cement by adding additives like fly ash known for reducing the emissions of CO2 and minimizing production costs. The thermal power stations in Morocco produce more than 500 000 tons per year. For ecological and sustainable development reasons, it is desirable to recycle these quantities according to beneficial methods to their addition in the cement. This study aims to investigate the influence of grinding fly ash on the physico-chemical and mechanical properties of fly ash blended CPJ45 cement. The addition of the fly ash particles to the grinder leads respectively to the breakage of the particles and to reduce the agglomeration effect in the balls of cement grinder. Fly ash milling was found to improve particles fineness, and increase the silica and alumina content in the cement. Furthermore, milled fly ash blended cements show higher compressive strength compared to unmilled fly ash blended cements, due to improved fly ash reactivity through their mechanical activation.


Sign in / Sign up

Export Citation Format

Share Document