scholarly journals Optimal forecast algorithm based on compatible linear filtration and extrapolation

2021 ◽  
Vol 8 (2) ◽  
pp. 157-167
Author(s):  
O. A. Mashkov ◽  
◽  
R. K. Murasov ◽  
Y. V. Kravchenko ◽  
N. B. Dakhno ◽  
...  

This work considers the methods of optimal linear extrapolation of the flight path of the aircraft, which provide a minimum of the mean square of the forecast error with different amounts of a priori information. The research is based on the canonical decomposition of a vectorial random process. It is determined that the development of modern technologies entails increasing requirements for quality and accuracy of control. However, since the existing methods of linear extrapolation do not provide for the maximum accuracy of the forecast due to the inherent constraints on the random process that describe the motion of aircraft, this necessitates a further development and improvement of methods for extrapolation of aircraft trajectories. The peculiarity of the developed methods for extrapolation of aircraft trajectory is that they allow within the correlation model to fully take into account the properties of a real random process that describes the motion of aircraft at the landing approach stage. This provides for the maximum possible accuracy of linear extrapolation with a variety of information support conditions. These methods allow improving the safety of flights and the efficiency of aviation. Accordingly, new capabilities of aircraft and other sophisticated technical systems can be further considered.

2018 ◽  
Vol 226 ◽  
pp. 05005 ◽  
Author(s):  
Vladimir I. Marchuk ◽  
Dmitriy Y. Chernyshov

The paper considers a proposed method of detecting anomalous values in the realization of a random process in case of a limited amount of a priori information about the statistical characteristics of the noise component. A new approach is proposed to replace the detected anomalous values, which does not introduce a correlation relation into the results of the output pro-cessed random process.


2017 ◽  
Vol 14 (3) ◽  
pp. 365-377
Author(s):  
Evgenii Semenishchev ◽  
Igor Shraifel ◽  
Ilya Svirin

The paper presents a method for smoothing signals represented by a single realization of a finite-length random process, under conditions of a limited amount of a priori information about the signal function and statistical characteristics the noise component. The recommendations on the use of parameters affecting the processing speed and the efficiency of smoothing are given. Two solutions are presented to obtain the result of smoothing the signals. The efficiency results are shown for the processing of digital signals. Examples of comparison of simple methods and suggested ones are given.


2008 ◽  
Vol 136 (7) ◽  
pp. 2633-2650 ◽  
Author(s):  
Stefano Migliorini ◽  
Chiara Piccolo ◽  
Clive D. Rodgers

Abstract Satellite observations are the most assimilated data type by operational meteorological centers. Spaceborne instruments can make measurements all over the globe and provide observations for assimilation even where the coverage of other data is poor. It is therefore most important that such observations, which are only indirectly related to the state of the atmosphere, are assimilated as optimally as possible. In this study, a detailed characterization of both retrievals and observed radiances for assimilation is provided, along with an error analysis. A method for assimilating remote sounding data while preserving its information content is presented. The main features of the technique are as follows: (i) the retrieval–forecast error cross covariance is removed even when the retrieval is severely constrained by a priori information, (ii) the radiative transfer calculations for radiance assimilation are done offline, and (iii) the number of assimilated quantities per observation is reduced to the number of effective degrees of freedom in the observation.


Author(s):  
Maria A. Milkova

Nowadays the process of information accumulation is so rapid that the concept of the usual iterative search requires revision. Being in the world of oversaturated information in order to comprehensively cover and analyze the problem under study, it is necessary to make high demands on the search methods. An innovative approach to search should flexibly take into account the large amount of already accumulated knowledge and a priori requirements for results. The results, in turn, should immediately provide a roadmap of the direction being studied with the possibility of as much detail as possible. The approach to search based on topic modeling, the so-called topic search, allows you to take into account all these requirements and thereby streamline the nature of working with information, increase the efficiency of knowledge production, avoid cognitive biases in the perception of information, which is important both on micro and macro level. In order to demonstrate an example of applying topic search, the article considers the task of analyzing an import substitution program based on patent data. The program includes plans for 22 industries and contains more than 1,500 products and technologies for the proposed import substitution. The use of patent search based on topic modeling allows to search immediately by the blocks of a priori information – terms of industrial plans for import substitution and at the output get a selection of relevant documents for each of the industries. This approach allows not only to provide a comprehensive picture of the effectiveness of the program as a whole, but also to visually obtain more detailed information about which groups of products and technologies have been patented.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 177
Author(s):  
Iliya Gritsenko ◽  
Michael Kovalev ◽  
George Krasin ◽  
Matvey Konoplyov ◽  
Nikita Stsepuro

Recently the transport-of-intensity equation as a phase imaging method turned out as an effective microscopy method that does not require the use of high-resolution optical systems and a priori information about the object. In this paper we propose a mathematical model that adapts the transport-of-intensity equation for the purpose of wavefront sensing of the given light wave. The analysis of the influence of the longitudinal displacement z and the step between intensity distributions measurements on the error in determining the wavefront radius of curvature of a spherical wave is carried out. The proposed method is compared with the traditional Shack–Hartmann method and the method based on computer-generated Fourier holograms. Numerical simulation showed that the proposed method allows measurement of the wavefront radius of curvature with radius of 40 mm and with accuracy of ~200 μm.


Sign in / Sign up

Export Citation Format

Share Document