scholarly journals Computational Method for Wavefront Sensing Based on Transport-Of-Intensity Equation

Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 177
Author(s):  
Iliya Gritsenko ◽  
Michael Kovalev ◽  
George Krasin ◽  
Matvey Konoplyov ◽  
Nikita Stsepuro

Recently the transport-of-intensity equation as a phase imaging method turned out as an effective microscopy method that does not require the use of high-resolution optical systems and a priori information about the object. In this paper we propose a mathematical model that adapts the transport-of-intensity equation for the purpose of wavefront sensing of the given light wave. The analysis of the influence of the longitudinal displacement z and the step between intensity distributions measurements on the error in determining the wavefront radius of curvature of a spherical wave is carried out. The proposed method is compared with the traditional Shack–Hartmann method and the method based on computer-generated Fourier holograms. Numerical simulation showed that the proposed method allows measurement of the wavefront radius of curvature with radius of 40 mm and with accuracy of ~200 μm.

2021 ◽  
Vol 2127 (1) ◽  
pp. 012066
Author(s):  
A E Gavlina ◽  
D A Novikov ◽  
M V Askerko

Abstract This report is devoted to the processing of the interference pattern of the tested mirror, obtained using the orthogonal ray scheme, where the convex testing surface is illuminated by a collimated beam, which is perpendicular to the optical axis of the surface. The interference pattern is created by two wavefronts, one of which is reflected from the mirror, while the other wavefront bypasses the mirror and travels directly to the detector plane. The result of interference pattern processing is a topography map formed by several tangential profiles. The proposed method is suited for large diameter convex spherical and aspherical mirrors and does not require a priori information of surface under the test, such as the vertex radius of curvature and the conical constant. Theoretical foundation of the data processing method are presented.


Author(s):  
Maria A. Milkova

Nowadays the process of information accumulation is so rapid that the concept of the usual iterative search requires revision. Being in the world of oversaturated information in order to comprehensively cover and analyze the problem under study, it is necessary to make high demands on the search methods. An innovative approach to search should flexibly take into account the large amount of already accumulated knowledge and a priori requirements for results. The results, in turn, should immediately provide a roadmap of the direction being studied with the possibility of as much detail as possible. The approach to search based on topic modeling, the so-called topic search, allows you to take into account all these requirements and thereby streamline the nature of working with information, increase the efficiency of knowledge production, avoid cognitive biases in the perception of information, which is important both on micro and macro level. In order to demonstrate an example of applying topic search, the article considers the task of analyzing an import substitution program based on patent data. The program includes plans for 22 industries and contains more than 1,500 products and technologies for the proposed import substitution. The use of patent search based on topic modeling allows to search immediately by the blocks of a priori information – terms of industrial plans for import substitution and at the output get a selection of relevant documents for each of the industries. This approach allows not only to provide a comprehensive picture of the effectiveness of the program as a whole, but also to visually obtain more detailed information about which groups of products and technologies have been patented.


2013 ◽  
Vol 109 (5) ◽  
pp. 1259-1267 ◽  
Author(s):  
Devika Narain ◽  
Robert J. van Beers ◽  
Jeroen B. J. Smeets ◽  
Eli Brenner

In the course of its interaction with the world, the human nervous system must constantly estimate various variables in the surrounding environment. Past research indicates that environmental variables may be represented as probabilistic distributions of a priori information (priors). Priors for environmental variables that do not change much over time have been widely studied. Little is known, however, about how priors develop in environments with nonstationary statistics. We examine whether humans change their reliance on the prior based on recent changes in environmental variance. Through experimentation, we obtain an online estimate of the human sensorimotor prior (prediction) and then compare it to similar online predictions made by various nonadaptive and adaptive models. Simulations show that models that rapidly adapt to nonstationary components in the environments predict the stimuli better than models that do not take the changing statistics of the environment into consideration. We found that adaptive models best predict participants' responses in most cases. However, we find no support for the idea that this is a consequence of increased reliance on recent experience just after the occurrence of a systematic change in the environment.


Sign in / Sign up

Export Citation Format

Share Document