scholarly journals Analysis of calculating level of service for pedestrians

2021 ◽  
Vol 2021 (1) ◽  
pp. 50-59
Author(s):  
Vsevolod Prykhodko ◽  
◽  
Ihor Vikovych ◽  

In this paper, several methods of the assessment of pedestrian objects operation based on the level of service are reviewed. Today, there is a problem that should be assessed, particularly how pedestrian paths respond the level of service. Assessment of this level is the most widespread method of determination the objects` quality that relate to the pedestrian operations. Places, where a significant probability of conflict between different flows and their users, are often called intersections. Moreover, on such intersections, particularly with complex road conditions and on which the movement of cyclists, cars, and different vehicles is present, road users face with complicated situations when every of them should be sure in his safety and forecast further actions and decisions of other road users. The most widespread and generally accepted methods of assessment of level of service on pedestrian path, particularly: Highway capacity manual 2000 method, Australian method, method of the trip quality, Landice model and common approach analysis. Vehicles, signal delay, and interaction of pedestrians and cyclists were determined as the main factors that have impact on the level of service of pedestrians at the intersections. Analysis of different methods in the paper allows assessing and identifying the level of service determining the characteristics that could help in solving the questions concerning the comfort of pedestrian movement. In the range of these methods, the principles of vehicles movement and interaction with pedestrians are also reviewed. Other methods relate more to the design of the objects of pedestrian environment than factual movement of pedestrians. To form the whole understanding of the methodology of determination of the level of service of pedestrian objects, we should analyze and compare the values, obtained by different methods.

Author(s):  
Scott S. Washburn ◽  
Kenneth G. Courage ◽  
Thuha Nguyen

One of the primary determinants of signalized intersection delay, and consequently signalized arterial level of service, is progression quality. Progression quality is represented by an arrival-type variable in the Highway Capacity Manual (HCM) procedure for calculating signal delay. Ideally, the arrival type is estimated from collected field data, in particular the percentage of vehicles that arrive at an intersection approach while that approach has the green signal indication. The Florida Department of Transportation prescribes the use of its ARTPLAN software program for planning-level analyses of signalized arterial level of service in the state of Florida. This software is a planning-level implementation of the arterial analysis methodology contained in Chapter 15 of the 2000 HCM. One of the inputs to this software program is arrival type. Given the significant impact this variable can have on delay, and subsequently level-of-service results, it is prudent to have as good an estimate of its value as possible. However, collecting accurate data on progression quality is very difficult, and the intent behind a planning-level analysis is that detailed field data should not be required. Consequently, the blanket HCM recommendations for arrival type are often applied in these analyses without much consideration of how appropriate these values really are for the specified roadway, traffic, and control conditions. A method developed to estimate arrival-type values with a simulation-based approach from the planning-level inputs of ARTPLAN is described. Also provided is a summary of simulation-derived arrival-type values from a large number of sample data sets.


2002 ◽  
Vol 1802 (1) ◽  
pp. 105-114 ◽  
Author(s):  
R. Tapio Luttinen

The Highway Capacity Manual (HCM) 2000 provides methods to estimate performance measures and the level of service for different types of traffic facilities. Because neither the input data nor the model parameters are totally accurate, there is an element of uncertainty in the results. An analytical method was used to estimate the uncertainty in the service measures of two-lane highways. The input data and the model parameters were considered as random variables. The propagation of error through the arithmetic operations in the HCM 2000 methodology was estimated. Finally, the uncertainty in the average travel speed and percent time spent following was analyzed, and four approaches were considered to deal with uncertainty in the level of service.


Author(s):  
Mark R. Virkler ◽  
Shashi Gannavaram ◽  
Anand Ramabhadran

The 1994 update of the Highway Capacity Manual (HCM) includes a planning procedure to estimate the capacity condition of a signalized intersection (Xcm). The planning method results can also be extended to a planning application of the more data-intensive HCM operational procedure to estimate intersection critical flow-to-capacity ratio (Xc) and level of service with only planning-level data. Both the planning procedure and the planning application of the operational procedure involve default adjustment factors and synthesized traffic signal timing (called the “default signal timing”). Data from 166 Missouri intersections were used to determine how well the planning approaches predict operational analysis results. In general, the default signal timings had shorter cycle lengths than the timing plans used at pretimed signals. The shorter cycle lengths led to slightly higher flow-to-capacity ratios, since a higher proportion of each cycle was devoted to lost time. The default signal timings also had more equal flow-to-capacity ratios within critical lane groups. The shorter cycle lengths and more equal flow-to-capacity ratios led to a predicted level of service that was the same or better than that calculated for actual conditions. For the subject intersections, locally calibrated default adjustment factors yielded better predictions of flow-to-capacity ratios and level of service than the HCM defaults. The planning value for Xcm was often less than the actual Xc for operational analysis of actual conditions. This was to be expected since Xcm is based on the maximum allowable cycle length. The HCM planning procedure is expected to receive wide use in a variety of planning and design applications. Calibration of appropriate local default values should improve the accuracy of the planning procedure results.


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Ahmed I. Z. Mohamed ◽  
Yusheng Ci ◽  
Yiqiu Tan

Mega elliptical roundabout is a new intersection on rural multilane highways. This intersection was developed in a previous paper using simulation data, and the authors found that it is better than interchange (full cloverleaf) in most scenarios of traffic flow. Basically, there are no guidelines or procedures for designing mega elliptical roundabout in AASHTO Green Book, Federal Highway Administration guides, and Highway Capacity Manual. Thus, the purpose of this study is to analyze the traffic operation performance and propose a methodology for calculating the capacity of mega elliptical roundabout and also the level of service by gap acceptance theory. Moreover, this research studied the influence of different values of truck ratios and also different values of a major highway speed on geometric design and traffic operation performance for mega elliptical roundabout. To validate the thoroughness of the proposed methodology, VISSIM simulations were conducted. This research will assist practitioners in determining the appropriate geometric design, assessing mega elliptical roundabout intersections, and making comparisons with other alternatives.


Author(s):  
Ioannis Kaparias ◽  
Rui Wang

Inspired by developments in urban planning, the concept of “shared space” has recently emerged as a way of creating a better public realm. This is achieved through a range of streetscape treatments aimed at asserting the function of streets as places by facilitating pedestrian movement and lowering vehicle traffic volumes and speeds. The characteristics of streets with elements of shared space point to the conjecture that traffic conditions and road user perceptions may be different to those on streets designed according to more conventional principles, and this is likely to have an impact on the quality of service. The aim of this paper is, therefore, to perform an analysis in relation to level of service (LOS) and to investigate how this may change as a result of the implementation of street layouts with elements of shared space. Using video data from the Exhibition Road site in London during periods before and after its conversion from a conventional dual carriageway to a layout featuring several elements of shared space, changes in relation to LOS for both vehicle traffic and pedestrians are investigated, by applying the corresponding methods from the 2010 Highway Capacity Manual. The results suggest that streets with elements of shared space provide a much improved pedestrian experience, as expressed by higher LOS ratings, but without compromising the quality of vehicle traffic flow, which, in fact, also sees slight improvements.


2018 ◽  
Vol 181 ◽  
pp. 06006
Author(s):  
Najid

Value of Passenger Car Unit or commonly known as PCU value is a value that is given to any vehicle that is classified into heavy vehicles, light vehicles (passenger car) and motorcycles. The value of passenger car unit on Indonesia Highway Capacity Manual (IHCM) set up in 1997 is based on a study conducted from 1980-1990 in several cities in Indonesia At the time of the study, the traffic conditions are very different to the current traffic conditions. That affects of difference traffic conditions are the composition of traffic, traffic regulations, traffic density, traffic discipline and the presence of mass transit, so that the results of traffic analysis do not always correspond to reality as there are anomalies in the determination of the level of road service (Najid, 2014). As well the incompatibility of the capacity value which is considered due to the incompatibility value of Passenger Car Units (PCU). Evaluation PCU become very important to get the value of traffic parameters into compliance with actually occur. In accordance with the traffic density is higher actually, then it is necessary to study for evaluation against PCU current value and the need to approach or to get the value of PCU more in line with current traffic conditions. Data collected at two cities, those are Bandung and Semarang. Based on analysis found PCU’s value that got from survey have difference but not all significantly with PCU value in IHCM.


Author(s):  
Christopher J. Fasching

A particular component of two-way stop unsignalized intersection analyses as presented in the 1994 Highway Capacity Manual (HCM) is described. Specifically, advantages to minor movement capacity are evaluated where traffic flows overlap in multiple lanes. From vehicular arrival data collected by the author, it was determined that the current HCM can significantly underestimate the true potential capacity of minor movements that face multiple lanes of free-flow conflicting traffic. A modification to the HCM procedure is introduced in which an “effective” conflicting flow is calculated on the basis of “blockage” caused by individual lanes of traffic, assuming a Poisson count distribution. In every case examined (24 total), a more accurate potential capacity estimate resulted relative to that determined by the HCM procedure. The modification also resulted in a more accurate level of service in 8 of the 24 cases.


Author(s):  
Rod Troutbeck

The background to the Highway Capacity Manual (HCM) section on the analysis of the performance of roundabouts is discussed. The paper has two main objectives: to discuss the background of different techniques used to evaluate the level of service and to describe the method included in the HCM. The paper is in two parts. In the first part, the first objective is addressed and the parameters needed to predict both delay and capacity, which in turn are used to evaluate the level of service, are described. It is concluded that the gap acceptance approach is a reasonable one when the performance of roundabouts is predicted using data from uncongested sites. If there are a significant number of roundabouts with congested approaches, an empirical model should be used. It is also concluded that the results from one country cannot be immediately transferred to another. In the second part of the paper, the recommended practice included in HCM Chapter 10 is given.


1976 ◽  
Vol 3 (3) ◽  
pp. 355-371
Author(s):  
John F. Morrall ◽  
Neville Cameron ◽  
Al Werner

Trans-mountain highway capacity is sensitive to the percentage of recreational vehicles in the traffic stream, the manner in which passenger car equivalents for recreational vehicles are used in capacity computations, terrain classification, and the choice of design hourly volume. The sensitivity of capacity to these factors is demonstrated for the trans-mountain portion of the Trans-Canada highway which is a two-lane highway, characterized in many locations by long steep grades. This particular highway has a high percentage of recreational vehicles during summer months. The Highway Capacity Manual does not make any provision for the effect of such vehicles and previous highway planning studies have used the adjustment factors for trucks and buses to estimate their effect. Neglecting the effect of recreational vehicles and/or improper use of their passenger car equivalents in capacity computations can result in serious errors in the determination of highway capacity especially in mountainous areas. Further research is required in the areas of terrain definition, selection of design hourly volume, and the present concept of level of service.


Author(s):  
M. M. Minderhoud ◽  
L. Elefteriadou Elefteriadou

Weaving sections are a commonly adopted freeway facility both in the United States and in Europe. Knowledge about the capacity and level of service achievable on different types of weaving segments is necessary for the design and management of freeways. Guidelines such as those of the U.S. Highway Capacity Manual (HCM) provide capacity values for different weaving configuration types. The Dutch guidelines for the design of weaving segments are compared with those of the U.S. HCM. Differences between their respective approaches are identified, and a comparison of capacity values is conducted. It was found that there are large differences in capacity estimates for certain weaving configuration types. The results of a sensitivity analysis explain these differences in capacity values to a large extent. This analysis showed that it is important to consider the weaving proportions per leg. Currently, neither the HCM nor the Dutch approach considers different weaving flows per incoming leg. The introduction of an additional variable into the calculation procedure that takes into account the presence of asymmetrical weaving flows is recommended.


Sign in / Sign up

Export Citation Format

Share Document