Surface Gravity Waves

Author(s):  
John A. Adam

This chapter deals with the underlying mathematics of surface gravity waves, defined as gravity waves observed on an air–sea interface of the ocean. Surface gravity waves, or surface waves, differ from internal waves, gravity waves that occur within the body of the water (such as between parts of different densities). Examples of gravity waves are wind-generated waves on the water surface, as well tsunamis and ocean tides. Wind-generated gravity waves on the free surface of the Earth's seas, oceans, ponds, and lakes have a period of between 0.3 and 30 seconds. The chapter first describes the basic fluid equations before discussing the dispersion relations, with a particular focus on deep water waves, shallow water waves, and wavepackets. It also considers ship waves and how dispersion affects the wave pattern produced by a moving object, along with long and short waves.

2021 ◽  
Vol 2056 (1) ◽  
pp. 012033
Author(s):  
A V Poplevin ◽  
S V Filatov ◽  
A A Levchenko

Abstract We studied experimentally the generation of vortex flow by non-collinear gravity waves with a frequency of 2.34 Hz. The vortices formed on the water surface have the form of stripes, the width L=π/(2k sin θ) of which is determined by the wave vector k and the angle between them, and the length is determined by the size of the system. We demonstrate that the measured dependence Ω(t) can be described within the recently developed model that considers the Eulerian contribution to the generated vortex flow and the effect of surface contamination.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 96 ◽  
Author(s):  
Georgi Gary Rozenman ◽  
Shenhe Fu ◽  
Ady Arie ◽  
Lev Shemer

We present the theoretical models and review the most recent results of a class of experiments in the field of surface gravity waves. These experiments serve as demonstration of an analogy to a broad variety of phenomena in optics and quantum mechanics. In particular, experiments involving Airy water-wave packets were carried out. The Airy wave packets have attracted tremendous attention in optics and quantum mechanics owing to their unique properties, spanning from an ability to propagate along parabolic trajectories without spreading, and to accumulating a phase that scales with the cubic power of time. Non-dispersive Cosine-Gauss wave packets and self-similar Hermite-Gauss wave packets, also well known in the field of optics and quantum mechanics, were recently studied using surface gravity waves as well. These wave packets demonstrated self-healing properties in water wave pulses as well, preserving their width despite being dispersive. Finally, this new approach also allows to observe diffractive focusing from a temporal slit with finite width.


Author(s):  
Sudebi Bhattacharyya ◽  
K. P. Das

AbstractThe effect of randomness on the stability of deep water surface gravity waves in the presence of a thin thermocline is studied. A previously derived fourth order nonlinear evolution equation is used to find a spectral transport equation for a narrow band of surface gravity wave trains. This equation is used to study the stability of an initially homogeneous Lorentz shape of spectrum to small long wave-length perturbations for a range of spectral widths. The growth rate of the instability is found to decrease with the increase of spectral widths. It is found that the fourth order term in the evolution equation produces a decrease in the growth rate of the instability. There is stability if the spectral width exceeds a certain critical value. For a vanishing bandwidth the deterministic growth rate of the instability is recovered. Graphs have been plotted showing the variations of the growth rate of the instability against the wavenumber of the perturbation for some different values of spectral width, thermocline depth, angle of perturbation and wave steepness.


2021 ◽  
Author(s):  
Ian Stokes ◽  
Andrew Lucas

Abstract Background: From the laboratory at Scripps Institution of Oceanography, it is common to see the brown pelican (Pelecanus occidentalis) traveling along the crests of ocean waves just offshore of the surf zone. When flying in this manner, the birds can travel long distances without flapping, centimeters above the ocean's surface. Here we derive a theoretical framework for assessing the energetic savings related to this behavior, `wave-slope soaring,' in which an organism in flight takes advantage of localized updrafts caused by traveling ocean surface gravity waves. Methods: The energy cost of steady, constant altitude flight in and out of ground effect are analyzed as controls. Potential flow theory is used to quantify the ocean wave-induced wind associated with near-shoaling, weakly nonlinear, shallow water ocean surface gravity waves moving through an atmosphere initially at rest. Using perturbation theory and the Green's function for Laplace's equation in 2D with Dirichlet boundary conditions, we obtain integrals for the horizontal and vertical components of the wave-induced wind in a frame of reference moving with the wave. Wave-slope soaring flight is then analyzed using an energetics-based approach for waves under a range of ocean conditions and the body plan of P. occidentalis . Results: For ground effect flight, we calculate a ~ 15 - 25% reduction in cost of transport as compared with steady, level flight out of ground effect. When wave-slope soaring is employed at flight heights ≤ 2m in typical ocean conditions (2m wave height, 15s period), we calculate 60-70% reduction in cost of transport as compared with flight in ground effect. A relatively small increase in swell amplitude or decrease in flight height allows up to 100% of the cost of transport to be offset by wave-slope soaring behavior. Conclusions: The theoretical development presented here suggests there are energy savings associated with wave-slope soaring. Individual brown pelicans may significantly decrease their cost of transport utilizing this mode of flight under typical ocean conditions. Thus wave-slope soaring may provide fitness benefit to these highly mobile organisms that depend on patchy prey distribution over large home ranges.


Author(s):  
D. Karmakar ◽  
C. Guedes Soares

The interaction of surface gravity waves with horizontal pitching plate for actively control waves is investigated based on the linearized theory of water waves. The three-dimensional (3D) problem is formulated for the submerged plate pitching about its middle point and the other plate is considered to be floating above the submerged plate. The submerged plate's thickness is considered negligible in comparison with the water depth and wavelength of the incident wave. The study is carried out using the matched eigenfunction expansion method and the analytical solution is developed for the interaction of the surface gravity waves with horizontal submerged structure. The performance is analyzed for both impermeable and porous submerged pitching plate. The numerical results for the reflection coefficient, transmission coefficient, and free-surface deflection are computed and analyzed. The study is carried to find the optimal value of the length and depth of the submerged plate at which the dissipation of the incident wave energy is observed. The reduction the wave transformation due to the pitching of the plate with the change in angle of incidence is also analyzed. The present study will be helpful in the analysis of proper functioning of submerged pitching plate to control wave motion for the protection of offshore structures.


Sign in / Sign up

Export Citation Format

Share Document