scholarly journals Iron Ore Mineralization of Ramagiri Greenstone Belt, Anantapur District, Andhra Pradesh, India

Author(s):  
Lakshmidevamma B. ◽  
◽  
Venkatarami Reddy Y. ◽  
Gope Naik V. ◽  
◽  
...  
1989 ◽  
Vol 31 (3) ◽  
pp. 307-317 ◽  
Author(s):  
K.Surya Prakash Rao ◽  
R.S.N. Sastry ◽  
S.V. Raju

2013 ◽  
Vol 652-654 ◽  
pp. 2538-2542 ◽  
Author(s):  
Xiao Hui Fan ◽  
Ying Li ◽  
Xu Ling Chen

The main effect on iron ore mineralization performance in the sintering process is the grain size of raw material and chemical composition. The results show that -0.5mm particles can mineralize, but +0.5mm particles remain a nucleus in sinter. This paper analyses the effect of the chemical composition on mineralization characteristics of liquid production. The relationship model is established by using regression analysis between the chemical composition and liquid formation characteristics. The mian factors of mineralization in the chemical composition: SiO2, CaO, MgO and Al2O3.


2019 ◽  
Vol 12 (18) ◽  
Author(s):  
Sukanta Goswami ◽  
Vinod Kumar Maurya ◽  
Ravi Prakash Tiwari ◽  
Sudhiranjan Swain ◽  
M. B. Verma

Minerals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 677
Author(s):  
Ebotehouna ◽  
Xie ◽  
Adomako-Ansah ◽  
Pei

The Nabeba iron ore deposit is located at the northern part of Congo Craton, Republic of Congo. The ore deposit consists of supergene and hypogene ores, both of which are hosted in the Precambrian Nabeba banded iron formation (BIF). This study focuses on the hypogene iron ore mineralization associated with quartz veins in the Nabeba deposit, for which two hypogene ore stages have been recognized based on geologic and petrographic observations: early-stage high‐grade hematite‐rich ore (HO‐1) and late-stage magnetite‐rich ore (HO‐2). Based on microthermometric measurements and laser Raman spectroscopy of the fluid inclusions, the H2O‐NaCl ± CO2 fluids interacting with the Nabeba BIF at the HO‐1 stage evolve from high‐to‐moderate temperatures (203–405 °C) and contrasting salinities (moderate-to-low: 1–15 wt. % NaCl equiv.; high: 30–35 wt. % NaCl equiv.) to H2O‐NaCl fluids of moderate‐to‐low temperatures (150–290 °C) and salinities (1–11 wt. % NaCl equiv.) for the HO‐2 ore stage. Assuming equilibrium oxygen isotopic exchange between quartz and water, the δ18Ofluid values range from 4.7–8.1‰ for the HO‐1 stage and −2.3‰ to −1.5‰ for the HO‐2 stage. This implies the ore‐forming fluid of initially-mixed metamorphic–magmatic origin, later replenished by seawater and/or meteoric water during the formation of the HO‐2 stage. These mixtures of different fluids, coupled with their interaction with the BIF lithology followed by phase separation, are responsible for the enrichment of hypogene iron ore in the Nabeba deposit.


2016 ◽  
Vol 63 (2) ◽  
pp. 109-118
Author(s):  
Kayode Oyedele ◽  
Sunday Oladele ◽  
Anthony Salami

Abstract The banded iron ore mineralization at Ero was investigated using aeromagnetic, resistivity and induced polarization (IP) methods with the aim of characterizing the deposit. Analysis of the aeromagnetic data involved the application of reduced-to-equator transformation, derivative filters, analytic signal and source parameter imaging techniques. Computer modelling of some of the identified anomalies was undertaken. The electrical resistivity and IP methods helped in discriminating between the iron ore and the host rock. The results showed that the banded iron formations (BIFs) were characterized by spherical analytic signal anomalies ranging from 0.035 nT/m to 0.06 nT/m within the granite gneiss and magnetic susceptibility of 0.007-0.014 SI. The iron ore had low chargeability (0.1-5.0 msec) and resistivity (1.5 × 102 to 2.5 × 103 Ωm). Structural features trending in the NE-SW, E-W, and NW-SE were identified, suggesting that the area had undergone many episodes of tectonic events. Depth to the BIF varied from the surface up to about 200 m. The chargeability response of the iron bodies suggested an average grade of 20%-40%, making the prospect for economic exploitation attractive.


2015 ◽  
Vol 3 (2) ◽  
pp. 39-50 ◽  
Author(s):  
Aaron K. Waswa ◽  
Christopher M. Nyamai ◽  
Eliud M. Mathu ◽  
Daniel W. Ichang'i

Sign in / Sign up

Export Citation Format

Share Document