scholarly journals Impregnated Zeolite as Catalyst in Esterification Treatment from High Free Fatty Acids Palm Oil Mill Effluent

2021 ◽  
Vol 16 (1) ◽  
pp. 19-27
Author(s):  
Ika Kusuma Nugraheni ◽  
Nuryati Nuryati ◽  
Anggun Angkasa Bela Persada ◽  
Triyono Triyono ◽  
Wega Trisunaryanti

Although Palm Oil Mill Effluent (POME) can be used as a raw material for biodiesel production, the POME contains an excessive amount of Free Fatty Acids (FFA), necessitating a preliminary process and esterification. POME is degummed using phosphate acid and bleached with carbon active. Additionally, this study used KOH-impregnated zeolite to reduce FFA. The purpose of this study is to determine the effect of adding impregnated zeolite on esterification. POME was heated to 600C for 30 minutes, then degumming with 3 % of phosphate acid for 30 minutes, followed by bleaching with carbon active with a comparison ratio of 8:3 at 1000C for 1 hour, and finally, esterification with 3 percent impregnated zeolite from the POME weight at 600C for 4 hours. The analysis was conducted using titration methods to determine the FFA of each esterification. The data will be compared between zeolite and non-zeolite degumming, bleaching, and esterification. The results indicated that the most effective method for reducing FFA was degumming, bleaching, and esterification with zeolite.

2018 ◽  
Vol 67 ◽  
pp. 02038 ◽  
Author(s):  
Deodata Leela ◽  
Syukri M. Nur ◽  
Erkata Yandri ◽  
Ratna Ariati

The purpose of this paper is to prove that waste palm oil industry (POME) can be used as raw material (source of energy) for biodiesel. In the production process, palm oil mill produced large amounts of waste. The provision of a shelter pond system is a temporary solution from palm oil mill to relocate the liquid waste. With BOD content with range 25,625 to 39,616.7 mg/l and COD content with range 117,333.3 to 146,333.3 mg/l, this condition will generate a serious problem for environmental pollution. Therefore, it is important to test the characteristics of waste oil from each pond. The hexane solvent extraction method is used to separate the oil from the liquid waste. The first pond contains 51.3% water, 21% oil, 2% sludge & sediment and 5.6% free fatty acids. The second pond contains 86.7% water, 16.1% oil, 2.4% sludge & sediment and 8% free fatty acids. The third pond contains 74% water, 6.8% oil, 3.1% sludge & sediment and 12.2% free fatty acid and the fourth pond contains 78.7% water, 3.7% oil, 2% sludge & sediment and 13.3% free fatty acids. Based on the results of this research, the characteristics of POME and its oil losses are the fraction of oil wasted from Crude Palm Oil (CPO) processing, whereas CPO has characteristics as a raw material for Biodiesel. POME should be processed into biodiesel since the liquid waste is discarded from palm oil mill, so there is no need a big land to make waste storage ponds.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Negisa Darajeh ◽  
Azni Idris ◽  
Paul Truong ◽  
Astimar Abdul Aziz ◽  
Rosenani Abu Bakar ◽  
...  

Palm oil mill effluent (POME), a pollutant produced by the palm oil industry, was treated by the Vetiver system technology (VST). This technology was applied for the first time to treat POME in order to decrease biochemical oxygen demand (BOD) and chemical oxygen demand (COD). In this study, two different concentrations of POME (low and high) were treated with Vetiver plants for 2 weeks. The results showed that Vetiver was able to reduce the BOD up to 90% in low concentration POME and 60% in high concentration POME, while control sets (without plant) only was able to reduce 15% of BOD. The COD reduction was 94% in low concentration POME and 39% in high concentration POME, while control just shows reduction of 12%. Morphologically, maximum root and shoot lengths were 70 cm, the number of tillers and leaves was 344 and 86, and biomass production was 4.1 kg m−2. These results showed that VST was effective in reducing BOD and COD in POME. The treatment in low concentration was superior to the high concentration. Furthermore, biomass of plant can be considered as a promising raw material for biofuel production while high amount of biomass was generated in low concentration of POME.


2021 ◽  
Vol 945 (1) ◽  
pp. 012042
Author(s):  
Y M Tang ◽  
W Y Wong ◽  
K T Tan ◽  
L P Wong

Abstract Palm oil is the planet’s most exploited vegetable oil. However, its extensive commercialization has resulted in massive waste, particularly palm oil mill effluent (POME), contributing to severe environmental pollution. POME has a high concentration of oil and grease (O&G) with the mean value of 4,340 mg/L, exceeding the standard discharge limit of 50 mg/L. Hence, the recovery of oil content in POME is crucial as it could be a key material in biodiesel production. The oil droplets in POME exist in two phases: floating in the supernatant and suspended in the solids. During the solvent extraction process, the oil adsorbed by the solid particles is not entirely recovered. Thus, ultrasonication-based process intensification is introduced. Ultrasonication can break apart the solid particles and release the oil content using the principle of sound waves, thereby it will eventually increase the yield of oil recovery from POME. Although some studies were done on oil extraction from POME, the use of ultrasonication technique to enhance the extraction of oil from POME has never been done. The current research work is to investigate the feasibility of using ultrasonication technique to enhance the oil recovery from POME and compare it to a non-ultrasonicated POME. Overall, this research discovered that using ultrasonication as a pre-treatment would improve oil recovery yield from POME by 39.17% as compared to non-ultrasonicated sample under the optimum ultrasonication conditions of 30% amplitude and 30 seconds duration.


2019 ◽  
Vol 135 ◽  
pp. 1178-1185 ◽  
Author(s):  
Adamu Idris Matinja ◽  
Nor Azimah Mohd Zain ◽  
Mohd Suardi Suhaimi ◽  
Adamu Jibril Alhassan

2015 ◽  
Vol 72 (11) ◽  
pp. 1889-1895 ◽  
Author(s):  
Tjandra Setiadi ◽  
Martha Aznury ◽  
Azis Trianto ◽  
Adi Pancoro

The highest volatile fatty acids (VFAs) concentration from palm oil mill effluent (POME) treated by anaerobic fermentation was achieved for a 1-day process when the main acids used were acetic, propionic and butyric acids. Polyhydroxyalkanoate (PHA) production with VFAs from POME as precursors in the fed-batch mode has advantages over batch mode, both in terms of its productivity and 3HV (3-hydroxyvalerate) composition in the produced polymer. With the fed batch, the productivity increased to 343% and contained more 3HV than those of the batch. The structures of the PHA were identified by different methods and they supported each other; the resulting products consisted of functional groups of 3HB (3-hydroxybutyrate) and 3HV.


2015 ◽  
Vol 63 (1) ◽  
pp. 92-100 ◽  
Author(s):  
Mohd Rafais Mohd Razaif-Mazinah ◽  
Mohamad Suffian Mohamad Annuar ◽  
Yusrizam Sharifuddin

Sign in / Sign up

Export Citation Format

Share Document