scholarly journals PROSES PEMBERSIHAN SYNGAS HASIL GASIFIKASI TEMPURUNG KEMIRI MENGGUNAKAN SIKLON

Author(s):  
Jemseng Carles Abineno ◽  
Johny Agustinus Koylal

This study aims to examine the process of cleaning for synthesis gas (syngas) resulted from candlenut shell gasification by using a cyclone. Research was started by design or manufacture a cyclone as a tool that can condense the tar carried in the syngas produced from the gasification process. This tool was tested with by trial and error such that got a tool that can function optimally to condense tar. The syngas cleaning experiment using the cyclone was conducted by four treatments, namely S1 (1 cyclone), S2 (2 cyclones), S3 (3 cyclones), and S4 (4 cyclones).  All treatments were repeated 4 (four) times, so there were 16 experimental units. The parameter measured is the amount of tar that was condensed on the cyclone. Result showed that the syngas cleaning process using a cyclone worked well, and the best treatment was S3 (3 cyclones) with an average amount of condensed tar of 141.7 ml/kg of shell. The use of cyclones can condense tar and other particulates carried in the syngas. The cleaned syngas can be applied as fuel in an internal  combustion engine as a substitute for diesel and gasoline fuels.       Keywords: gasification, syngas, cleaning, cyclone

2021 ◽  
Vol 12 (1) ◽  
pp. 98
Author(s):  
Andrej Chríbik ◽  
Marián Polóni ◽  
Ľuboš Magdolen ◽  
Matej Minárik

The aim of the presented article is to analyse the influence of synthesis gas composition on the power, economic, and internal parameters of an atmospheric two-cylinder spark-ignition internal combustion engine (displacement of 686 cm3) designed for a micro-cogeneration unit. Synthesis gases produced mainly from waste contain combustible components as their basic material (methane, hydrogen, and carbon monoxide), as well as inert gases (carbon dioxide and nitrogen). A total of twelve synthesis gases were analysed that fall into the category of medium-energy gases with lower heating value in the range from 8 to 12 MJ/kg. All of the resulting parameters from the operation of the combustion engine powered by synthesis gases were compared with the reference fuel methane. The results show a decrease in the performance parameters for all operating loads and an increase in hourly fuel consumption. Specifically, for the operating speed of the micro-cogeneration unit (1500 L/min), the decrease in power parameters was in the range of 7.1–23.5%; however, the increase in hourly fuel consumption was higher by 270% to 420%. The decrease in effective efficiency ranged from 0.4 to 4.6%, which in percentage terms represented a decrease from 1.3% to 14.5%. The process of fuel combustion was most strongly influenced by the proportion of hydrogen and inert gases in the mixture. It can be concluded that setting up the synthesis gas production in the waste gasification process in order to achieve optimum performance and economic parameters of the combustion engine for a micro cogeneration unit has an influential role and is of crucial importance.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 688 ◽  
Author(s):  
Mauro Villarini ◽  
Vera Marcantonio ◽  
Andrea Colantoni ◽  
Enrico Bocci

The present paper presents a study of biomass waste to energy conversion using gasification and internal combustion engine for power generation. The biomass waste analyzed is the most produced on Italian soil, chosen for suitable properties in the gasification process. Good quality syngas with up to 16.1% CO–4.3% CH4–23.1% H2 can be produced. The syngas lower heating value may vary from 1.86 MJ/ Nm3 to 4.5 MJ/Nm3 in the gasification with air and from 5.2 MJ/ Nm3 to 7.5 MJ/Nm3 in the gasification with steam. The cold gas efficiency may vary from 16% to 41% in the gasification with air and from 37% to 60% in the gasification with steam, depending on the different biomass waste utilized in the process and the different operating conditions. Based on the sensitivity studies carried out in the paper and paying attention to the cold gas efficiency and to the LHV, we have selected the best configuration process for the best syngas composition to feed the internal combustion engine. The influence of syngas fuel properties on the engine is studied through the electrical efficiency and the cogeneration efficiency.


1964 ◽  
Vol 86 (2) ◽  
pp. 201-208
Author(s):  
P. Van Der Werf

A computation of the idealized compression-ignition cycle with the aid of thermodynamic charts does not produce speedy and accurate results because (a) the procedure involves laborious trial-and-error methods, and (b) the charts available do not cover the whole range of mixture strengths at which this type of internal combustion engine may operate. It is shown in this paper that existing thermodynamic charts may be used to develop empirical equations for efficiency, work output, and mean effective pressure of the cycle for a range of mixture strengths and, in general, with improved accuracy. The equations are presented in the form of nomographs enabling performance to be estimated for compression-ignition or “Diesel” engines of unsupercharged design and operating on the mixed cycle.


2018 ◽  
Vol 0 (2) ◽  
Author(s):  
М. Р. Ткач ◽  
Б. Г. Тимошевський ◽  
О. С. Митрофанов ◽  
А. С. Познанський ◽  
А. Ю. Проскурін

Author(s):  
В. В. Руденко ◽  
И. В. Калужинов ◽  
Н. А. Андрущенко

The presence in operation of many prototypes of UAVs with propeller propellers, the use of such devices at relatively low altitudes and flight speeds makes the problem of noise reduction from UAVs urgent both from the point of view of acoustic imperceptibility and ecology.The aim of the work is to determine a set of methods that help to reduce the visibility of UAVs in the acoustic range. It is shown that the main source of noise from the UAV on the ground is the power plant, which includes the engine and the propeller. The parameters of the power plants influencing the processes that determine the acoustic signature of the UAV were investigated. A comprehensive analysis of the factors affecting visibility was carried out. The power plants include two-stroke and four-stroke engines, internal combustion and two-blade propellers. The use of silencers on the exhaust of the internal combustion engine was considered. The spectral characteristics of the acoustic fields of the propeller-driven power plants for the operating sample of the UAV "Eco" were obtained. The measurements were carried out in one-third octave and 1/48 octave frequency bands under static conditions. The venue is the KhAI airfield. Note that the propellers that were part of the power plants operated at Reynolds numbers (Re0,75<2*105), which can significantly affect its aerodynamic and acoustic characteristics. It is shown that when choosing a UAV control system, one should take into account the fact that two-stroke piston engines are the dominant source in the noise of propeller-driven control systems in the absence of a hood and mufflers in the intake and exhaust tracts. The use of a four-stroke internal combustion engine significantly reduces the noise of the control system. In the general case, the position of the boundaries of the zone of acoustic visibility of a UAV at the location of the observer is determined by the ratio between the intensity of acoustic radiation perceived by the observer from the UAV and the intensity of sound corresponding to the natural acoustic background and depends on the degree of manifestation of acoustic effects accompanying the propagation of sound in a turbulent atmosphere - the refraction of sound waves. Absorption and dissipation of acoustic energy. The calculation and comparison of the UAV detection range was carried out taking into account the existing natural maskers.The results of experimental studies are presented that allow assessing the degree of acoustic signature of the UAV. A set of measures aimed at reducing the intensity of the acoustic signature of the UAV in various regions of the radiation spectrum has been determined.


Author(s):  
Oleksandr Gryshchuk ◽  
Volodymyr Hladchenko ◽  
Uriy Overchenko

This article looks at some comparative statistics on the development and use of electric vehicles (hereinafter referred to as EM) as an example of sales and future sales forecasts for EM in countries that focus on environmental conservation. Examples of financial investments already underway and to be made in the near future by the largest automakers in the development and distribution of EM in the world are given. Steps are taken to improve the environmental situation in countries (for example, the prohibition of entry into the city center), the scientific and applied problem of improving the energy efficiency and environmental safety of the operation of wheeled vehicles (hereinafter referred to as the CTE). The basic and more widespread schemes of conversion of the internal combustion engine car (hereinafter -ICE) to the electric motor car (by replacing the gasoline or diesel electric motor), as well as the main requirements that must be observed for the safe use and operation of the electric vehicle. The problem is solved by justifying the feasibility of re-equipment of the KTZ by replacing the internal combustion engine with an electric motor. On the basis of the statistics collected by the State Automobile Transit Research Institute on the number of issued conclusions of scientific and technical expertise regarding the approval of the possibility of conversion of a car with an internal combustion engine (gasoline or diesel) to a car with an electric motor (electric vehicle), the conclusions on the feasibility of such conclusion were made. Keywords: electricvehicles, ecological safety, electricmotor, statistics provided, car, vehicle by replacing.


Sign in / Sign up

Export Citation Format

Share Document