scholarly journals Diagnosis of plant viruses by nucleic acid hybridization

1987 ◽  
Vol 59 (3) ◽  
pp. 179-191
Author(s):  
Reijo Karjalainen ◽  
Leo Rouhiainen ◽  
Hans Söderlund

Nucleic acid hybridization is a powerful technique for the diagnosis of many plant viruses not easily detected by serological techniques. It is particularly effective in the detection of viruses occurring in low amount in plant tissue, viruses that are poor immunogens or contain satellites. Molecular probes with desired specificities can be prepared by recombinant DNA techniques for large scale use. cDNA probes of potato virus X(PVX) RNA were made by molecular cloning, and the clones were 32P labelled by nick translation. Hybridization of cDNA to PVX RNA revealed 1 ng of purified virus in 2 µl spots dried onto nitrocellulose filter. Infected samples of crude leaf extracts were easily detected by hybridization, while probes did not react with healthy leaf samples. Nucleic acid hybridization research aims at replacing radiometric probes with nonradioactive methods involving enzymes which are directly or indirectly coupled to the probe and whose presence is observed with the aid of a colour changing substrate. Hybridization assay formats that can easily be automatized are under development. Sandwich hybridization is a simple test format developed for analyzing unpurified biological material, and it appears to be a powerful tool for microbial diagnostics. Sensitivity can be improved by using detection systems in which the specific activity of the probe is increased. Procedures such as ’polymerase chain reaction’, in which the amount of detectable nucleic acid sequences can be increased, are promising alternatives for increasing sensitivity. It is concluded that even if probe-based assays are in their infancy, they will no doubt develop towards such easy use as have immunological test kits.

1987 ◽  
Author(s):  
M Freund ◽  
J-P Cazenave ◽  
M-L Wiesel ◽  
C Roitsch ◽  
N Riehl-Bellon ◽  
...  

Hirudin (HIR), a polypeptide of 65 aminoacids, is the most potent natural inhibitor of coagulation by forming rapidly a very stable and specific non covalent 1:1 complex with α-thrombin, independent of antithrombin III. Although natural HIR has in vivo anticoagulant and antithrombotic properties, its limited availability for large scale purification has prevented further clinical testing and potential use; this can now be solved by recombinant DNA technology. We have previously reported the cloning and expression of a cDNA encoding one variant (called HV-2) of Hirudo medicinalis HIR (Proc. Natl. Acad. Sci. USA. 1986, 83, 1084-1088). The main factors responsible for venous thrombosis are stasis and thrombin generation secondary to tissue factor liberation from vascular cells and monocytes by injury, endotoxin, interleukin-1 or cachectin and the subsequent activation and circulation of activated clotting factors. We have studied the antithrombotic properties of recombinant HIR, HV-2, in a rat experiemental model of venous thrombosis. HV-2 was expressed in yeast, extracted from culture supernatant and purified by HPLC. Pure HV-2 had an isoleucine NH2-terminus and a specific activity of 13000 ATU/mg.30 male Wistar rats (225-300g) were anesthetized with pentobarbital. At time t (0 min) an i.v. (penis) injection of 0.4 ml of saline or HV-2 (2000 to 8000 ATU/kg) was given, followed at t (5min) by 25 mg/kg tissue factor (Thromboplastin C, Dade) i.v. ; 10 s later stasis of the exposed vena cava between 2 sutures 0.7 cm apart and at t (15 min) removal, blotting, fixation and weighing of the thrombus. Linear regression analysis showed a correlation (r=0.99) between the dose of HV-2 and thrombus weight and a calculated IC50 = 3000 ATU/kg. Total inhibition of thrombus formation was seen after injection of 6000 ATU/kg HV-2 and lasted up to 15 min of circulation, HV-2 being completely eliminated from blood in 60 min and accumulated in the kidneys as shown by gamma imaging with 131I-HV-2. In conclusion, the recombinant HIR HV-2 is a potent immediate antithrombin which inhibits venous thrombosis induced by tissue factor and stasis.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Juliane Röder ◽  
Christina Dickmeis ◽  
Rainer Fischer ◽  
Ulrich Commandeur

Plant virus-based nanoparticles can be produced in plants on a large scale and are easily modified to introduce new functions, making them suitable for applications such as vaccination and drug delivery, tissue engineering, and in vivo imaging. The latter is often achieved using green fluorescent protein and its derivatives, but the monovalent fluorescent protein iLOV is smaller and more robust. Here, we fused the iLOV polypeptide to the N-terminus of the Potato virus X (PVX) coat protein, directly or via the Foot-and-mouth disease virus 2A sequence, for expression in Nicotiana benthamiana. Direct fusion of the iLOV polypeptide did not prevent the assembly or systemic spread of the virus and we verified the presence of fusion proteins and iLOV hybrid virus particles in leaf extracts. Compared to wild-type PVX virions, the PVX particles displaying the iLOV peptide showed an atypical, intertwined morphology. Our results confirm that a direct fusion of the iLOV fluorescent protein to filamentous PVX nanoparticles offers a promising tool for imaging applications.


1997 ◽  
Vol 45 (5) ◽  
pp. 755-763 ◽  
Author(s):  
Richard H. Melloni ◽  
Neil Aronin ◽  
Louis J. DeGennaro ◽  
Craig F. Ferris ◽  
Robert J. Harrison

We present a novel procedure for detection of low- and high-abundance messenger RNAs in the brain by in situ hybridization histochemistry, by using fragmented double-stranded cDNA as molecular probes. The procedure involves digesting the cDNA of interest with the restriction endonuclease from Desulfocibrio desulfuricans (Dde I digestion), followed by random primed labeling, which generates a family of high specific activity cDNA fragments. This procedure is a rapid, straightforward, and reproducible method of obtaining sensitive probes for in situ hybridization and is generally applicable to the analysis of the expression of a large number of genes. Here we report the use of this procedure to prepare probes for the detection of synapsin I, p150Glued, neurotensin, c-fos, and c-jun mRNAs in brain, using both isotopic and non-isotopic labeling methods. Because this procedure does not require complex recombinant DNA manipulations or oligonucleotide design, it should prove useful to the non-molecular biologist examining the expression of genes in the central nervous system.


1994 ◽  
Author(s):  
Ramon L. Jordan ◽  
Abed Gera ◽  
Hei-Ti Hsu ◽  
Andre Franck ◽  
Gad Loebenstein

Pelargonium (Geranium) is the number one pot plant in many areas of the United States and Europe. Israel and the U.S. send to Europe rooted cuttings, foundation stocks and finished plants to supply a certain share of the market. Geraniums are propagated mainly vegetatively from cuttings. Consequently, viral diseases have been and remain a major threat to the production and quality of the crop. Among the viruses isolated from naturally infected geraniums, 11 are not specific to Pelargonium and occur in other crops while 6 other viruses seem to be limited to geranium. However, several of these viruses are not sufficiently characterized to conclude that they are distinct agents and their nomenclature and taxonomy are confusing. The ability to separate, distinguish and detect the different viruses in geranium will overcome obstacles te developing effective detection and certification schemes. Our focus was to further characterize some of these viruses and develop better methods for their detection and control. These viruses include: isolates of pelargonium line pattern virus (PLPV), pelargonium ringspot virus (PelRSV), pelargonium flower break virus (PFBV), pelargonium leaf curl (PLCV), and tomato ringspot virus (TomRSV). Twelve hybridoma cell lines secreting monoclonal antibodies specific to a geranium isolate of TomRSV were produced. These antibodies are currently being characterized and will be tested for the ability to detect TomRSV in infected geraniums. The biological, biochemical and serological properties of four isometric viruses - PLPV, PelRSV, and PFBV (and a PelRSV-like isolate from Italy called GR57) isolated from geraniums exhibiting line and ring pattern or flower break symptoms - and an isolate ol elderbeny latent virus (ELV; which the literature indicates is the same as PelRSV) have been determined Cloned cDNA copies of the genomic RNAs of these viruses were sequenced and the sizes and locations of predicted viral proteins deduced. A portion of the putative replicase genes was also sequenced from cloned RT-PCR fragments. We have shown that, when compared to the published biochemical and serological properties, and sequences and genome organizations of other small isometric plant viruses, all of these viruses should each be considered new, distinct members of the Carmovirus group of the family Tombusviridae. Hybridization assays using recombinant DNA probes also demonstrated that PLPV, PelRSV, and ELV produce only one subgenomic RNA in infected plants. This unusual property of the gene expression of these three viruses suggests that they are unique among the Carmoviruses. The development of new technologies for the detection of these viruses in geranium was also demonstrated. Hybridization probes developed to PFBV (radioactively-labeled cRNA riboprobes) and to PLPV (non-radioactive digoxigenin-labeled cDNAs) were generally shown to be no more sensitive for the detection of virus in infected plants than the standard ELISA serology-based assays. However, a reverse transcriptase-polymerase chain reaction assay was shown to be over 1000 times more sensitive in detecting PFBV in leaf extracts of infected geranium than was ELISA. This research has lead to a better understanding of the identity of the viruses infecting pelargonium and to the development of new tools that can be used in an improved scheme of providing virus-indexed pelargonium plants. The sequence information, and the serological and cloned DNA probes generated from this work, will allow the application of these new tools for virus detection, which will be useful in domestic and international indexing programs which are essential for the production of virus-free germplasm both for domestic markets and the international exchange of plant material.


Author(s):  
F. A. Durum ◽  
R. G. Goldman ◽  
T. J. Bolling ◽  
M. F. Miller

CMP-KDO synthetase (CKS) is an enzyme which plays a key role in the synthesis of LPS, an outer membrane component unique to gram negative bacteria. CKS activates KDO to CMP-KDO for incorporation into LPS. The enzyme is normally present in low concentrations (0.02% of total cell protein) which makes it difficult to perform large scale isolation and purification. Recently, the gene for CKS from E. coli was cloned and various recombinant DNA constructs overproducing CKS several thousandfold (unpublished data) were derived. Interestingly, no cytoplasmic inclusions of overproduced CKS were observed by EM (Fig. 1) which is in contrast to other reports of large proteinaceous inclusion bodies in various overproducing recombinant strains. The present immunocytochemical study was undertaken to localize CKS in these cells.Immune labeling conditions were first optimized using a previously described cell-free test system. Briefly, this involves soaking small blocks of polymerized bovine serum albumin in purified CKS antigen and subjecting them to various fixation, embedding and immunochemical conditions.


Sign in / Sign up

Export Citation Format

Share Document