scholarly journals Calcium, magnesium and potassium in mineral soils from the southern half of Finland

1973 ◽  
Vol 45 (3) ◽  
pp. 254-261
Author(s):  
Armi Kaila

210 samples of mineral soils from the southern half of Finland with mainly an acid precambrian bedrock, were analysed for the total contents of Ca, Mg and K, and for the portion of these nutrients which could be exchanged by N NH4OAc (pH 7), dissolved by 0.1 N HCI at room temperature, or released by N HCI at 50° C. The total content of Ca was lowest in samples of heavy clay, 0.78±0.14 % in the surface soils and 0.92±0.10 % in the deeper layers. The mean content in the groups of other soils was at least about 1.1 %. The total content of Mg increased with an increase in the clay content (r = 0.81***). It ranged from 0.6±0.1 % in the sand and fine sand samples to 1.53±0.19 % in the heavy clay soils of the surface layers and to 1.89±0.12 % in those of the deeper layers. Also in the groups of loam and silt soils and of the coarser clay soils, respectively, the Mg content was in the deeper layers higher than in the surface soils. The total content of K also increased with the clay content (r=0.73***) from 1.7±0.1 % in the sand and fine sand soils to 2.74±0.21 % in the heavy clay soils of the surface layers and to 3.10±0.07 % in those of the deeper layers. The portion of exchangeable Ca was relatively high: in the groups of surface soils from more than one tenth to one third of the total amount. The corresponding average amounts released by even the more drastic treatment with acid were not markedly higher. Only a few per cents of total Mg were exchangeable and slightly higher amounts were dissolved by 0.1 N HCI, whereas the treatment with N HCI at 50° C released about half of the total Mg. Exchangeable K and K dissolved by 0,1 N HCI did not exceed 1 % of the total K, except slightly in the heavy clay soils; the average amounts released by N HCI ranged from 5 to 18 % of the total K. The plant availability of these nutrients was discussed.

1972 ◽  
Vol 44 (3) ◽  
pp. 164-170
Author(s):  
Armi Kaila

The content of exchangeable Ca, Mg, K and Na replaced by neutral ammonium acetate was determined in 470 samples of mineral soils from various parts of Finland, except from Lapland. The amount of all these cations tended to increase with an increase in the clay content, but variation within each textural class was large, and the ranges usually overlapped those of the other classes. The higher acidity of virgin surface soils was connected with a lower average degree of saturation by Ca as compared with the corresponding textural classes of cultivated soils. No significant difference in the respective contents of other cations was detected. The samples of various textural groups from deeper layers were usually poorer in exchangeable Ca and K than the corresponding groups of plough layer. The mean content of exchangeable Mg was equal or even higher in the samples from deeper layers than in the samples from plough layer, except in the group of sand soils. The percentage of Mg of the effective CEC increased, as an average, from 9 in the sand and fine sand soils of plough layer to 30 in the heavy clay soils; in the heavy clay soils from deeper layers its mean value was 38 ± 4 %. In the samples of plough layer, the mean ratio of Ca to Mg in sand and fine sand soils was about 9, in silt and loam soils about 6, in the coarser clay soils about 4, and in heavy clay about 2.


1967 ◽  
Vol 39 (2) ◽  
pp. 107-118
Author(s):  
Armi Kaila

Release of nonexchangeable potassium by treatment with 1 N HCI at 50°C was studied on basis of a material consisting of 330 samples of Finnish mineral soils. The results ranged from 1 to 830mg K/100g. The mean content of nonexchangeable acid-soluble potassium was in the surface samples of sand and fine sand soils 95±26 mg/100 g, in loam soils 165±31 mg/100 g, in silt soils 195±52 mg/100 g, in clay loam soils 258±32 mg/100 g, in silty clay soils 283±43 mg/100 g, and in heavy clay soils 345±126 mg/100 g. In the subsoil samples of loam, clay loam, silty clay and heavy clay soils the mean content was significantly higher than in the surface samples, or 283±51 mg/100 g, 404±56 mg/100 g, 535±53 mg/100 g, and 580±37 mg/100 g, respectively. The results seem to be high as compared with data reported from Sweden, Norway and Germany. The content of nonexchangeable potassium released by acid was to some extent connected with the clay content: the correlation coefficient in the whole material was r = 0.74***, but only about 0.5*** both in the separate groups of the 178 nonclay samples and the 152 clay samples. There was only a very low correlation between the contents of nonexchangeable acid-soluble potassium and readily exchangeable potassium. A somewhat higher correlation, r = 0.65***, was found for the relationship between the former and fixation of added potassium under »wet» conditions, but it was markedly decreased by the elimination of the effect of the clay content. Nonexchangeable acid-soluble potassium usually represented a lower part of the total potassium in the surface samples than in the subsoil samples, and also the proportion tended to be higher in the clay soils than in the coarser soils. It varied from 0.2 to 26.3 per cent in the small material studied. In most cultivated soils less nonexchangeable potassium was released from the samples of plough layer than from samples of deeper layers. In a podsol profile the minimum content of nonexchangeable and exchangeable potassium and the maximum of fixation of added potassium was found in the A2 horizon; in a brown podsolic soil all these test values decreased fairly regularly with depth. From some silt and silty clay soils incubated for three months at room temperature a large part, even more than 40 per cent of the added potassium was not recovered by the acid extraction. Ammonium acetate extracted from 9 to 85 per cent of the potassium applied before incubation, and the part of added potassium found as nonexchangeable acid-soluble form varied from 5 to 53 per cent. The equilibrium between the different potassium fractions in soil was discussed. It was supposed that differences in the ability of plants to utilize nonexchangeable potassium may partly depend on the level to which plant roots are able to decrease potassium concentration in the solution around the minerals.


1986 ◽  
Vol 58 (2) ◽  
pp. 43-46
Author(s):  
Helinä Hartikainen

The base-neutralizing capacity, BMC7 (OH- as meq kg-1 needed to raise soil pH to 7), was determined graphically from curves obtained in KOH titration (at a constant ionic strength of I = 0.1). In 84 soil samples, BMC7 amounted to 0—316 meq kg-1, being highest in the heavy clay soils and lowest in the non-clay soils. In different textural groups, BMC7 seemed most markedly to be dependent on the initial soil pH, followed by organic C or oxalate soluble Al, in the coarser clays also on clay content. The results evidence that in determination of lime requirement, attention should be paid to the capacity of soil acidity. In routine soil testing, detailed lime recommendations for various soil types are needed.


1965 ◽  
Vol 37 (2) ◽  
pp. 148-161
Author(s):  
Ulla Marttila

An attempt was made to study the cation exchange capacity, the percentage base saturation and the amounts of the most common cations in the different types and depths of the Finnish soils on the basis of a material of 100 soil samples from various parts of the country. The exchangeable cations were leached from the soil with neutral 1N ammonium acetate. Calcium, magnesium, potassium, sodium and hydrogen were determined and the exchange capacity was calculated as the sum of all these cations. In the different soil types the mean values of the CEC were the following: organic soils 92.1 me per 100 g of soil, non-Litorina clays 28.9 », Litorina clays 27.9 », loam and silt soils 16.9 », sand and fine sand soils 14.5 ». The highest values of the percentage base saturation, on an average 85 % were obtained in the Glacial clay soils and the lowest ones in the organic soils, 34%, and in the Litorina clay soils, 36 %. BS % was generally greater in the deeper than in the surface layers. The contents of clay (


1977 ◽  
Vol 49 (4) ◽  
pp. 250-257
Author(s):  
František Haman

Leaching of nutrients and the changes in some chemical properties of surface soil layer treated with solutions of gradual acidity were followed under laboratory conditions. The 25-cm-high columns of three soils, (A – fine sand, B - loam, C - clay loam), placed in plastic tubes were treated with deionized water (pH 6) and with three solutions (pH 5, pH 4, pH 3) of sulphuric acid. The washed out were determined in the leachates collected into plastic bags. The largest amount of nitrogen found in the leachates was in the form of nitrate and this was proportional to the content of organic matter in the soils. The leached amount of NH4-N was considerably lower and like potassium it was negatively dependent upon the clay content in the soils. The concentrations of K, Ca and Mg in the leachates rose in relation to the declining pH of percolating solutions. Especially in soil A, acid solutions of pH 5 (and lower) washed out very effectively the cations. Soils Band C (with a higher content of clay particles) showed a higher resistance to K, Ca and Mg leaching. The acidified water influenced even the pH of the surface layer (0—7,5 cm) of soils in the columns. The most marked decrease in pH values was found in soil A after an application of the solution with pH 3. A decrease in the content of basic cations (Ca and Mg) was parallel to the acidification of the upper layer of the soils.


1985 ◽  
Vol 57 (4) ◽  
pp. 279-283
Author(s):  
Helinä Hartikainen

The acid-neutralizing capacity (ANC) was determined graphically from curves obtained in HCI titration (at a constant ionic strength I = 0.1) and was expressed as a quantity of acid (meq kg-1) needed to reduce the soil pH to 3.8. The relationship between ANC3.8 g and soil characteristics was studied statistically. In 84 soil samples, ANC3.8 ranged from 12 to 184 meq kg-1. The average ANC3.8 was highest in the heavy clay soils and lowest in the non-clay soils, but the differences between the various textural soil groups were not significant. In all soil groups the initial pHCaCl2 was relatively the most important factor explaining the variation in ANC3.8. Organic C was also a significant variable; this was considered to indicate the importance of cation exchange reactions of organic matter in acid-buffering. With the exception of heavy clay soils, oxalate-soluble Al significantly explained the variation in ANC3.8, suggesting that dissolution of Al hydroxides acted as a sink for H+ ions and contributed to the neutralizing capacity at the reference pH of 3.8.


1973 ◽  
Vol 45 (3) ◽  
pp. 319-324
Author(s):  
Armi Kaila ◽  
Helinä Kettunen

Uptake of magnesium from a sand, fine sand, muddy clay, silty clay and heavy clay soil under exhaustive cropping with perennial rye grass was studied in green house. An application of 0.5 g Mg as MgSO4 ∙ 7 H2O per the 5-liter pots increased slightly the total yield of rye grass shoots and markedly the amount of Mg harvested in the shoots from the sand and fine sand soils with an initial content of only 14 and 37 ppm exchangeable Mg, respectively. No respond to the application of Mg was detected in the silty clay and heavy clay soils which contained exchangeable Mg 226 and 910 ppm, respectively. The muddy clay soil contained 137 ppm exchangeable Mg, and the application of Mg markedly increased the amount of Mg harvested in the shoots, but brought about a decrease in the yield of shoots. The amount of Mg harvested in the shoots without the application of Mg was only in the sand and fine sand soils higher than the original content of exchangeable Mg. Yet, in all soils except in the muddy clay, the decrease in the content of exchangeable Mg during the cropping was lower than the amount of Mg harvested. This was taken to indicate that some release of nonexchangeable Mg did occur during this trial. According to a rough estimation this mobilization of Mg varied from 0 to 60 ppm, whereas the corresponding release of nonexchangeable K was 500–1000 ppm, except in the sand soil. The »exhaustion Mg», or the sum of Mg harvested in the shoots of rye grass and the exchangeable Mg in the soil after cropping, was in all soils of the same order as the amount of Mg extracted by 0.05 N or 0.1 N HCI from the original soil samples.


1964 ◽  
Vol 36 (1) ◽  
pp. 65-76
Author(s):  
Armi Kaila

The distribution of soluble phosphate in various fractions of soil phosphorus was studied by treating 1 g-samples of 180 mineral soils with 50 ml of a KH2PO4- solution containing P 5 mg/l for 24 hours, and carrying out the fractionation by the method of CHANG and JACKSON after the solution was removed and the moist samples had stood for 3 days at room temperature. The amount of retained phosphorus in the different fractions was computed by taking the difference between the treated and check samples. In the 70 samples of clay soils, the mean proportion of the retained phosphorus was 57 per cent of the 250 mg/kg applied, in the 62 samples of the sand and fine sand soils the corresponding part was 45 per cent, and in the 48 samples of loam and silt soils it was 44 per cent. The higher retention in the clay soils was mainly due to a higher retention in the alkali-soluble fraction. The net increase in the fluoride-soluble forms was of the same order in these three soil groups. On the average, more than 95 per cent of the sorbed phosphorus was found in the fluoride-soluble and alkali-soluble fractions. In one third of the samples a low net increase in the acid soluble fraction was detected, but this may be partly due to changes in the solubility of the native phosphorus in the treated samples. Owing to the fairly large variation, the tendency to somewhat higher mean values for the sorption in the subsoils compared with those of the topsoils was not statistically significant. The ratio between the sorbed amounts of fluoride-soluble and alkali soluble forms was higher in the sand and fine sand soils than in the clay soils. Only in 15 samples, most of them Litorina-soils, the net increase in the alkali-soluble forms was higher than in the fluoride-soluble fraction. Probably, because an equilibrium in the phosphorus conditions was not yet reached at the end of the treatment, the attempt failed to find any clear connection between the distribution of the sorbed phosphorus and such soil properties as pH, the contents of acid oxalate soluble aluminium and iron, organic carbon, the phosphate sorption capacity and the degree of phosphate saturation. Only in the subsoil samples, 76 per cent of the variation in the net increase in the fluoride-soluble fraction could be explained by the variation on the content of oxalate-soluble aluminium, and in the topsoil samples the oxalate-soluble iron and pH determined 61 per cent of the variation in the net increase in the alkali-soluble phosphorus. The ratio of oxalate-soluble aluminium to iron was more closely correlated with the ratio between the total amounts of fluoride-soluble and alkali-soluble phosphorus than with the ratio between the corresponding sorbed amounts. In the topsoils, it explained 70 per cent of the variation in the former. The distribution of the retained phosphorus did not depend on the soil pH, its content of organic carbon, or its degree of phosphate saturation but there was some tendency to a higher accumulation of alkali-soluble phosphorus compared with the fluoride-soluble forms with an increase in the phosphate sorption capacity of the soil.


2006 ◽  
Vol 2 (1) ◽  
pp. 51-72
Author(s):  
István Patay ◽  
Virág Sándor

Clod crushing is a principal problem with soils of high clay content. Therefore, there is a need for determining the conditions for clod breaking and clod crushing. The objective of the work was to develop a special purpose tool for single clod breaking both by rigid support of the clod and by a single clod supported by soil and to develop a machine for clod crushing. Furthermore, the purpose was to determine the relationship between the specific energy requirement for clod crushing in the function of soil plasticity and the soil moisture content by the means of the developed tool and machine. The main result of the experiments is summarized in a 3D diagram where the specific energy requirement for soil clod crushing is given in the function of the moisture content and the plasticity index for different clay soils.


2014 ◽  
Vol 79 (1) ◽  
pp. 20-29 ◽  
Author(s):  
E. RoTimi Ojo ◽  
Paul R. Bullock ◽  
John Fitzmaurice

Sign in / Sign up

Export Citation Format

Share Document