scholarly journals Exchangeable cations in Finnish soils

1965 ◽  
Vol 37 (2) ◽  
pp. 148-161
Author(s):  
Ulla Marttila

An attempt was made to study the cation exchange capacity, the percentage base saturation and the amounts of the most common cations in the different types and depths of the Finnish soils on the basis of a material of 100 soil samples from various parts of the country. The exchangeable cations were leached from the soil with neutral 1N ammonium acetate. Calcium, magnesium, potassium, sodium and hydrogen were determined and the exchange capacity was calculated as the sum of all these cations. In the different soil types the mean values of the CEC were the following: organic soils 92.1 me per 100 g of soil, non-Litorina clays 28.9 », Litorina clays 27.9 », loam and silt soils 16.9 », sand and fine sand soils 14.5 ». The highest values of the percentage base saturation, on an average 85 % were obtained in the Glacial clay soils and the lowest ones in the organic soils, 34%, and in the Litorina clay soils, 36 %. BS % was generally greater in the deeper than in the surface layers. The contents of clay (

1973 ◽  
Vol 45 (3) ◽  
pp. 254-261
Author(s):  
Armi Kaila

210 samples of mineral soils from the southern half of Finland with mainly an acid precambrian bedrock, were analysed for the total contents of Ca, Mg and K, and for the portion of these nutrients which could be exchanged by N NH4OAc (pH 7), dissolved by 0.1 N HCI at room temperature, or released by N HCI at 50° C. The total content of Ca was lowest in samples of heavy clay, 0.78±0.14 % in the surface soils and 0.92±0.10 % in the deeper layers. The mean content in the groups of other soils was at least about 1.1 %. The total content of Mg increased with an increase in the clay content (r = 0.81***). It ranged from 0.6±0.1 % in the sand and fine sand samples to 1.53±0.19 % in the heavy clay soils of the surface layers and to 1.89±0.12 % in those of the deeper layers. Also in the groups of loam and silt soils and of the coarser clay soils, respectively, the Mg content was in the deeper layers higher than in the surface soils. The total content of K also increased with the clay content (r=0.73***) from 1.7±0.1 % in the sand and fine sand soils to 2.74±0.21 % in the heavy clay soils of the surface layers and to 3.10±0.07 % in those of the deeper layers. The portion of exchangeable Ca was relatively high: in the groups of surface soils from more than one tenth to one third of the total amount. The corresponding average amounts released by even the more drastic treatment with acid were not markedly higher. Only a few per cents of total Mg were exchangeable and slightly higher amounts were dissolved by 0.1 N HCI, whereas the treatment with N HCI at 50° C released about half of the total Mg. Exchangeable K and K dissolved by 0,1 N HCI did not exceed 1 % of the total K, except slightly in the heavy clay soils; the average amounts released by N HCI ranged from 5 to 18 % of the total K. The plant availability of these nutrients was discussed.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pavel Seredin ◽  
Dmitry Goloshchapov ◽  
Yuri Ippolitov ◽  
Jitraporn Vongsvivut

AbstractThis study is aimed at investigating the features of mineralization of the enamel apatite at initial stages of fluorosis development. Samples of teeth with intact and fluorotic enamel in an early stage of the disease development (Thylstrup–Fejerskov Index = 1–3) were studied by Raman scattering and FTIR using Infrared Microspectroscopy beamline at Australian Synchrotron equipment. Based on the data obtained by optical microspectroscopy and calculation of the coefficient R [A-type/B-type], which represents the ratio of carbonation fraction of CO32−, replacing phosphate or hydroxyl radicals in the enamel apatite lattice, the features of mineralization of enamel apatite in the initial stages of development of the pathology caused by an increased content of fluorine in the oral cavity were established. Statistical analysis of the data showed significant differences in the mean values of R [A-type/B-type] ratio between the control and experimental groups for surface layers (p < 0.01). The data obtained are potentially significant as benchmarks in the development of a new approach to preventive diagnostics of the development of initial and clinically unregistered stages of human teeth fluorosis, as well as personalized control of the use of fluoride-containing caries-preventive agents.


2016 ◽  
Vol 64 (4) ◽  
pp. 415-424 ◽  
Author(s):  
Maciej Rożyński ◽  
Elżbieta Ziomek ◽  
Krystyna Demska-Zakęś ◽  
Agata Kowalska ◽  
Zdzisław Zakęś

The aim of this work was to determine the impact of etomidate (Propiscin) dose (1 and 2 ml l−1) and exposure time (2 and 10 min) on the biochemical and haematological parameters of juvenile pikeperch (Sander lucioperca) [mean body length (Lc) 25.9 cm; body weight (W) 189.9 g] that were reared in a recirculating aquaculture system (RAS). Significant changes in the mean values of total protein, globulin, calcium, magnesium, and ammonia were noted in all groups immediately following exposure. The greatest changes in the haematological indicators were observed in groups subjected to 10-min exposure at both doses of the anaesthetic. The specimens from these groups had higher values for white blood cells (WBC), red blood cells (RBC), haemoglobin (HGB), haematocrit (HCT), and mean corpuscular volume (MCV). Statistically significant differences in these same parameters were also noted in the groups of fish exposed to the anaesthetic for 2 min at a dose of 2 ml l−1, but they were not as pronounced. Twenty-four h following exposure to etomidate, all blood parameters in the experimental groups were comparable to those of the control group. Etomidate can be recommended as a safe, effective anaesthetic for pikeperch.


1971 ◽  
Vol 43 (3) ◽  
pp. 178-186
Author(s):  
Armi Kaila

Effective CEC of 230 mineral soil samples was estimated as sum of (Ca + Mg) and (AI + H) displaced by N KCI. The mean values as me/100 g of soil were, in the surface samples, 15.9 ± 2.0 in 46 clay soils, 8.9 ± 1.3 in 21 silt and loam soils, and 8.3 ± 1.1 in 39 sandy soils. In samples from the deeper layers the corresponding means were 16.3 ± 2.3 in 54 clay soils, 5.6 ± 0.9 in 21 silt and loam soils, and 2.5 ± 0.5 in 49 sandy soils. In surface samples of clay soils the mean effective CEC was about two thirds, in sandy soils of deeper layers about one third, and in all other groups about one half of the corresponding average potential CEC determined by neutral ammonium acetate. In the total material in which clay content ranged from 0 to 95%, organic C from 0.1 to 8.7 %, soil pH from 3.3 to 7.5, and oxalate soluble Al from 1.4 to 47.9 mmol/100 g, the »effective CEC» depended mostly on clay content: the partial correlation coefficient r = 0.90***, and the standard partial regression coefficient β = 0.84. The corresponding coefficients for the relationship between the »effective CEC» and the content of organic C were r = 0.55*** and β = 0.29, soil pH r = 0.35*** and β = 0.16, and oxalate soluble Al r = –0.13 and β = –0.06. The positive effect of liming on effective CEC, particularly, in coarser textured acid soils high in organic matter was emphasized.


1972 ◽  
Vol 44 (3) ◽  
pp. 164-170
Author(s):  
Armi Kaila

The content of exchangeable Ca, Mg, K and Na replaced by neutral ammonium acetate was determined in 470 samples of mineral soils from various parts of Finland, except from Lapland. The amount of all these cations tended to increase with an increase in the clay content, but variation within each textural class was large, and the ranges usually overlapped those of the other classes. The higher acidity of virgin surface soils was connected with a lower average degree of saturation by Ca as compared with the corresponding textural classes of cultivated soils. No significant difference in the respective contents of other cations was detected. The samples of various textural groups from deeper layers were usually poorer in exchangeable Ca and K than the corresponding groups of plough layer. The mean content of exchangeable Mg was equal or even higher in the samples from deeper layers than in the samples from plough layer, except in the group of sand soils. The percentage of Mg of the effective CEC increased, as an average, from 9 in the sand and fine sand soils of plough layer to 30 in the heavy clay soils; in the heavy clay soils from deeper layers its mean value was 38 ± 4 %. In the samples of plough layer, the mean ratio of Ca to Mg in sand and fine sand soils was about 9, in silt and loam soils about 6, in the coarser clay soils about 4, and in heavy clay about 2.


1958 ◽  
Vol 51 (1) ◽  
pp. 1-3 ◽  
Author(s):  
E. G. Hallsworth ◽  
G. K. Wilkinson

Partial regression analyses have been used to calculate mean values for the cation exchange capacities of the clay and organic matter from five groups of soils.It has been found that figures obtained for exchange capacities of the clays were in accord with what was known of their mineralogical composition. The corresponding figures for humus differed widely, the differences approaching significance, and were related to the mean pH of the soil group concerned.The data on which this paper is based were obtained when the authors were at the Agricultural Chemistry laboratories of the University of Sydney, to the Research Grants Committee of which they are greatly indebted for generous financial assistance. They are particularly indebted to Dr G. Wilkinson, C.S.I.R.O., Division of Statistics, Adelaide, for helpful discussions, to Miss H. V. Rayner and Miss J. Walker for certain of the analyses.


1964 ◽  
Vol 44 (1) ◽  
pp. 22-33 ◽  
Author(s):  
S. W. Reeder ◽  
Wm. Odynsky

The morphological characteristics and average chemical properties for 69 Solonetzic soils of northwestern Alberta are presented. The chemical data include conductivity and soluble salts, exchangeable cations and exchange capacity, pH, organic carbon, and total calcium, magnesium, and sodium. The results showed that the soils classified as Solonetz and Solodized Solonetz possessed properties in agreement with the limits proposed for soils of the Solonetzic Order, whereas the soils classified as Solods had chemical properties that placed them in a borderline position with the soils of this Order. It is proposed that consideration be given to the classification of a group of soils developed on saline materials that have a characteristic morphology and possess chemical properties that do not quite meet the limits required for soils of the Solonetzic Order.


2017 ◽  
Vol 1 (1) ◽  
pp. 7-20
Author(s):  
Nesim Dursun ◽  
Sait Gezgin ◽  
Mehmet Musa Özcan

Abstract This study was aimed to determine the deficiency or excessivity of nutrients for sugar beet crop in Konya plain. The results showed that the pH value was found as 7.65 and soils were classified as sodic; the organic matter was 1.59% and 92.9% of the soil samples was poor in terms of the organic matter. The mean lime content (CaCO3) was determined capacity was 26.07 and 97.1% of the soil samples was limy and the mean cation Exchange capacity was 26.07 me/100g, and it was varied between 10.72 me/100g and 44.7 me/100g. The mean available NH4+NO3 nitrogen content, phosphorus and potassium for crop were as 0.059%, 10.21 ppm and 1.39 me/100g, respectively. According to the these results, NH4+NO3 nitrogen and potassium amounts were sufficient while the phosphourus content was sufficient in 65.8% and insufficient in 34.2%. Cu and Mn content in soil samples were adequate. The sufficient amounts of Zn, B and Fe were 85.7%, 45.8% and 95.7% and their insufficient amounts were 14.53%, 54.2% and 4.3%, respectively. According to the result of leaf analyses, the content of nitrogen, phosphorus, potassium, calcium, magnesium and sodium were sufficient. The deficiencies of iron, zinc and bor were found in 4.3%, 14.3% and 38.6% of the total samples, respectively.


2010 ◽  
Vol 161 (12) ◽  
pp. 524-529
Author(s):  
Stephan Zimmermann ◽  
Andreas Chervet ◽  
Claudia Maurer ◽  
Wolfgang G. Sturny

The state of acidification of the soil and the sensitivity to further acidification of 238 forest soils in the canton of Bern are assessed by means of the pH-value and the exchangeable cations. Summing up all criteria of the assessment allows the building of seven classes of forest soils with increasing state of acidification, decreasing base saturation and cation exchange capacity and increasing risk for further acidification (decrease in pH-value and base saturation, increase in potential Al-toxicity). This assessment allows the identification of soils which are vulnerable to a fast further acidification and which are especially appropriate to be monitored in future in an environmental monitoring system.


1964 ◽  
Vol 36 (1) ◽  
pp. 65-76
Author(s):  
Armi Kaila

The distribution of soluble phosphate in various fractions of soil phosphorus was studied by treating 1 g-samples of 180 mineral soils with 50 ml of a KH2PO4- solution containing P 5 mg/l for 24 hours, and carrying out the fractionation by the method of CHANG and JACKSON after the solution was removed and the moist samples had stood for 3 days at room temperature. The amount of retained phosphorus in the different fractions was computed by taking the difference between the treated and check samples. In the 70 samples of clay soils, the mean proportion of the retained phosphorus was 57 per cent of the 250 mg/kg applied, in the 62 samples of the sand and fine sand soils the corresponding part was 45 per cent, and in the 48 samples of loam and silt soils it was 44 per cent. The higher retention in the clay soils was mainly due to a higher retention in the alkali-soluble fraction. The net increase in the fluoride-soluble forms was of the same order in these three soil groups. On the average, more than 95 per cent of the sorbed phosphorus was found in the fluoride-soluble and alkali-soluble fractions. In one third of the samples a low net increase in the acid soluble fraction was detected, but this may be partly due to changes in the solubility of the native phosphorus in the treated samples. Owing to the fairly large variation, the tendency to somewhat higher mean values for the sorption in the subsoils compared with those of the topsoils was not statistically significant. The ratio between the sorbed amounts of fluoride-soluble and alkali soluble forms was higher in the sand and fine sand soils than in the clay soils. Only in 15 samples, most of them Litorina-soils, the net increase in the alkali-soluble forms was higher than in the fluoride-soluble fraction. Probably, because an equilibrium in the phosphorus conditions was not yet reached at the end of the treatment, the attempt failed to find any clear connection between the distribution of the sorbed phosphorus and such soil properties as pH, the contents of acid oxalate soluble aluminium and iron, organic carbon, the phosphate sorption capacity and the degree of phosphate saturation. Only in the subsoil samples, 76 per cent of the variation in the net increase in the fluoride-soluble fraction could be explained by the variation on the content of oxalate-soluble aluminium, and in the topsoil samples the oxalate-soluble iron and pH determined 61 per cent of the variation in the net increase in the alkali-soluble phosphorus. The ratio of oxalate-soluble aluminium to iron was more closely correlated with the ratio between the total amounts of fluoride-soluble and alkali-soluble phosphorus than with the ratio between the corresponding sorbed amounts. In the topsoils, it explained 70 per cent of the variation in the former. The distribution of the retained phosphorus did not depend on the soil pH, its content of organic carbon, or its degree of phosphate saturation but there was some tendency to a higher accumulation of alkali-soluble phosphorus compared with the fluoride-soluble forms with an increase in the phosphate sorption capacity of the soil.


Sign in / Sign up

Export Citation Format

Share Document