scholarly journals Contribution of RADARSAT-1 Images to Structural Geological Mapping and Lineament Density Assessment in the Lobo River Watershed at Nibéhibé (Centre-West, Côte d'Ivoire)

2021 ◽  
Vol 2 (4) ◽  
pp. 15-20
Author(s):  
Souleymane Gningnéri Ouattara ◽  
Brou Dibi ◽  
Jules Mangoua Oi Mangoua

The populations living in the Lobo watershed at Nibéhibé are experiencing difficulties in obtaining drinking water. This situation is due to several factors, including a lack of control of the hydrogeological environment. The present study assesses the fracture network that has affected the Precambrian basement aquifer of the Lobo at Nibéhibé catchment area by structural mapping and by studying the spatial distribution of the lineaments. To do this, the study exploits the contribution of radar images. Manually and with the use of adaptive and median filters, 1330 lineaments of varying lengths were derived from the RADARSAT-1 image. The validation approach was based on the comparison of the lineament’s orientations of the current study with those of previous studies, and on the position of the geophysically-implanted boreholes relative to the fractures. This approach showed that the lineaments would most often correspond to fractures and would be involved in the occurrence of groundwater. The analysis of the orientation distribution of the lineaments revealed the heterogeneity of the directions and the predominance of the N-S and E-W family directions. The lineament density map showed that the study area is intensely fractured with a proportion of 93%. The results obtained from this thematic map are useful for the implementation of high efficiency hydraulic drilling programmes and for the implementation of water resources management tools.

2020 ◽  
Vol 10 (19) ◽  
pp. 6977
Author(s):  
Renato Macciotta ◽  
Chris Gräpel ◽  
Roger Skirrow

The design of rockfall protection structures requires information about the falling block volumes. Computational tools for rockfall trajectory simulation are now capable of modeling block fragmentation, requiring the fragmented volume-relative frequency distribution of rockfalls as input. This can be challenging at locations with scarce or nonexistent rockfall records and where block surveys are not feasible. The work in this paper shows that simple discrete fracture network realizations from structural mapping based on photogrammetric techniques can be used to reliably estimate rock fall block volumes. These estimates can be used for dimensioning rockfall protection structures in cases where data is scarce or not available. The methodology is tested at two sites in the Canadian Cordillera where limestone outcrops have been the source of recurrent rockfalls. The results suggest that fragmentation will largely tend to occur through weak planes and expansion of non-persistent discontinuities, while other block breakage mechanisms exert less influence in the fragmented volume-relative frequency distribution of rockfalls. Therefore, block volume distribution can be estimated using a simple discrete fracture network (DFN) with fully persistent discontinuities. Limitations of the methods are also discussed, as well as potential future research to address such limitations.


2018 ◽  
Vol 11 (1) ◽  
pp. 37-43
Author(s):  
H. G.W. Alkarawy

Studying the problems associated with dynamism and the volatility of the economic environment require the constant development of the enterprise is a complex and multifaceted phenomenon, marked by many unresolved problems. The choice of other business processes for outsourcing is an important problem, from the decision of which depends the efficiency of the development of industrial enterprises. They require constant development and improvement of the organization of the enterprise, development of new, progressive forms and management methods that can minimize and neutralize the impact of negative factors on the indicators of their development. Especially it concerns the industrial enterprises. The problems of low competitiveness of industrial enterprises, the limited resources necessary for their effective functioning, and the low level of human resources require changes in economic activity through effective management methods, high efficiency of business processes and increase the competitiveness of business entities, which should become the basis for the formation of a new model of economic activity of industrial enterprises on the basis of the constructed model for choosing the optimal outsourcing, providing to increase the efficiency of the industrial process of an industrial enterprise. The development of modern economy is based on the effectiveness of business processes, therefore research of business processes of industrial enterprises, are based on it, deserves special attention. Accelerating the pace of modernization, the speed of creating new knowledge and competition need not just the use of more advanced technical and technological solutions, but the introduction of management methods based on the model of choice of optimal outsourcing. Therefore, business processes in industrial enterprises are closely related to the introduction of new methods, technologies and management tools aimed at adapting business entities to the changing conditions of the external environment and the full realization of their production and potentials, and those that allow an industrial enterprise to obtain other competitive advantages.


2021 ◽  
Vol 14 (21) ◽  
Author(s):  
Gáspár Albert ◽  
Seif Ammar

Abstract Remotely sensed data such as satellite photos and radar images can be used to produce geological maps on arid regions, where the vegetation coverage does not have a significant effect. In central Tunisia, the Jebel Meloussi area has unique geological features and characteristic morphology (i.e. flat areas with dune fields in contrast with hills of folded and eroded stratigraphic sequences), which makes it an ideal area for testing new methods of automatic terrain classification. For this, data from the Sentinel 2 satellite sensor and the SRTM-based MERIT DEM (digital elevation model) were used in the present study. Using R scripts and the random forest classification method, modelling was performed on four lithological variables—derived from the different bands of the Sentinel 2 images—and two morphometric parameters for the area of the 1:50,000 geological map sheet no. 103. The four lithological variables were chosen to highlight the iron-bearing minerals since the spectral parameters of the Sentinel 2 sensors are especially useful for this purpose. The training areas of the classification were selected on the geological map. The results of the modelling identified Eocene and Cretaceous evaporite-bearing sedimentary series (such as the Jebs and the Bouhedma Formations) with the highest producer accuracy (> 60% of the predicted pixels match with the map). The pyritic argillites of the Sidi Khalif Formation were also recognized with the same accuracy, and the Quaternary sebhkas and dunes were also well predicted. The study concludes that the classification-based geological map is useful for field geologist prior to field surveys.


2018 ◽  
Vol 10 (12) ◽  
pp. 1919 ◽  
Author(s):  
Pavel Chernyshov ◽  
Teodor Vrecica ◽  
Yaron Toledo

A new method to invert X-band radar images for linear shoaling conditions is proposed. The commonly used approach for this type of inverse problems is the Fourier transform. Unlike in deep water conditions, in the shoaling region, waves are modulated both in terms of wavelength and amplitude. However, Fourier analysis assumes spacial and temporal periodicity, and homogeneity limiting its applicability to this region. In order to overcome these limitations, a wavelet based technique is developed. The proposed technique treats every spatial radar image within the time sequence individually, so no information on the dispersion relation is required. For validation purposes, surface elevation range-time shoaling realizations based on the mild slope equation are prepared. A radar imaging model including tilt and shadowing modulations, speckle noise, and the radar equation is applied to these realizations to provide modeled grazing incidence radar images. The inversion process starts with the application of the continuous wavelet transform independently for each spacial image. The procedure continues with employing a successive range independent modulation transfer function to the wavelet spectra in the wavenumber domain. Then, after a phase shift correction, an inverse continuous wavelet transform is applied. The procedure is finalized by a calibration of the retrieved maps. After the calibration, a thorough comparison between the original and the reconstructed surface elevations is performed. It shows high efficiency of the proposed method in treating wave number and amplitude modulated signals, as well as in addressing local phase shifts due to tilt modulation and noise contamination. The new inversion method is proven to have high accuracy in inhomogeneous conditions. It shows high potential to be implemented for individual wave reconstruction using real aperture radars.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1141
Author(s):  
Yanchun Shen ◽  
Jinlan Wang ◽  
Qiaolian Wang ◽  
Ximing Qiao ◽  
Yuye Wang ◽  
...  

Terahertz (THz) technology has unique applications in, for example, wireless communication, biochemical characterization, and security inspection. However, high-efficiency, low-cost, and actively tunable THz modulators are still scarce. We propose a broadband tunable THz beam deflector based on liquid crystals (LCs). By a periodic gradual distribution of the orientation of the LC in one direction, a frequency-independent geometric phase modulation is obtained. The LC device with this specific orientation distribution was obtained through ultraviolet polarization exposure. We have verified the broadband beam deflection in both the simulation and experiment. The device can achieve a good spin-coupled beam deflection effect in the 0.8–1.2 Thz band, and the average polarization conversion efficiency exceeds 70%. Moreover, because the electro-optical responsivity of LCs is excellent, graphene transparent electrode layers introduced on the upper and lower substrates enable the deflection modulation to be switched and dynamic tuning to be achieved.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4736 ◽  
Author(s):  
Alessandro Niccolai ◽  
Francesco Grimaccia ◽  
Sonia Leva

Photovoltaic (PV) plant monitoring and maintenance has become an often critical activity: the high efficiency requirements of the new European policy have often been in contrast with the many low-quality plants installed in several countries over the past few years. In actual industrial practices, heterogeneous information is produced, and they are often managed in a fragmented way. Several software tools have been developed for obtaining reliable and valuable information from the PV plant’s raw data. With the aim of gathering and managing all these data in a more complex and integrated manner, an information managing system is proposed in this work—it is composed of a structured database, called the Photovoltaic Indexed Database, and a user interface, called the Digital Map, that allows for easy access and completion of the information present in the database. This information managment system and PV plant digitalization process is able to analyze and properly index the IR in the database, as well as the visual images obtained in photovoltaic plant monitoring.


2021 ◽  
Vol 9 (11) ◽  
pp. 1279
Author(s):  
Hongrui Lu ◽  
Yingjun Zhang ◽  
Zhuolin Wang

The High Efficiency Video Coding Standard (HEVC) is one of the most advanced coding schemes at present, and its excellent coding performance is highly suitable for application in the navigation field with limited bandwidth. In recent years, the development of emerging technologies such as screen sharing and remote control has promoted the process of realizing the virtual driving of unmanned ships. In order to improve the transmission and coding efficiency during screen sharing, HEVC proposes a new extension scheme for screen content coding (HEVC-SCC), which is based on the original coding framework. SCC has improved the performance of compressing computer graphics content and video by adding new coding tools, but the complexity of the algorithm has also increased. At present, there is no delay in the compression optimization method designed for radar digital video in the field of navigation. Therefore, our paper starts from the perspective of increasing the speed of encoded radar video, and takes reducing the computational complexity of the rate distortion cost (RD-cost) as the goal of optimization. By analyzing the characteristics of shipborne radar digital video, a fast encoding algorithm for shipborne radar digital video based on deep learning is proposed. Firstly, a coding tree unit (CTU) division depth interval dataset of shipborne radar images was established. Secondly, in order to avoid erroneously skipping of the intra block copy (IBC)/palette mode (PLT) in the coding unit (CU) division search process, we designed a method to divide the depth interval by predicting the CTU in advance and limiting the CU rate distortion cost to be outside the traversal calculation depth interval, which effectively reduced the compression time. The effect of radar transmission and display shows that, within the acceptable range of Bjøntegaard Delta Bit Rate (BD-BR) and Bjøntegaard Delta Peak Signal to Noise Rate (BD-PSNR) attenuation, the algorithm proposed in this paper reduces the coding time by about 39.84%, on average, compared to SCM8.7.


1990 ◽  
Vol 127 (3) ◽  
pp. 195-207 ◽  
Author(s):  
S. A. Drury

AbstractThe 10 to 20 m resolution of SPOT image data, together with their potential for stereoscopic viewing, provides an excellent base for geological mapping inremote and rugged terrain that is akin to high-level aerial photographs. Their large format (60 × 60 km) also gives the advantage of synoptic coverage that ranks with images from the Landsat series of satellites. Use of stereo pairs of single-band SPOT images has enabled some revision of existing geological maps of the southern Aravalli Hills in Rajasthan at a scale of 1:100000, and has added significantly to knowledge of their complex mid-Proterozoic structure. In particular, many possibly early low-angled faults have been discovered, together with the tectonic nature of a major terrain boundary and much detail of intricate structures has been added in the more remote areas. The potentialfor lithological discrimination of multispectral SPOT data is severely limited by its restricted coverage of geologically important spectral features, and it is far surpassed by that of Landsat Thematic Mapper data, which would have been capable of more comprehensive lithofacies reconnaissance, had they been available.


1994 ◽  
Author(s):  
Catherine Mering ◽  
Jean-Francois Parrot

Sign in / Sign up

Export Citation Format

Share Document