scholarly journals Analysis of the current state of unstable geomorphological structures with modern methods

2020 ◽  
Vol 13 (1) ◽  
pp. 195-199
Author(s):  
Vyacheslav V. Dolotov ◽  
Yuri N. Goryachkin ◽  
Andrey V. Dolotov

The paper gives results of the digitization of the status and spatial position of a cliff in the Western Crimea coastal zone. The modern equipment and methods accelerate the survey from the time perspective and improve the quality of the outcomes; namely a high precision GNSS receiver in RTK mode and PHANTOM-3 PRO copter. The digital terrain model was generated with used the Agisoft Photoscan software. The paper shows that the precision of the mathematical model of the relief constructed by aerial photographs provides more detailed data in comparison to those obtained in the field observations. Furthermore, aerial photography makes it possible to calculate the number of spatial characteristics of hazardous for surveying and latent natural objects out of reach for an on-location investigation. As a result, the very detailed data about current condition of dangerous cliff were obtained. The paper also evaluates the linear and volumetric characteristics of cleavages that are prone to collapse.

2021 ◽  
pp. 22-29
Author(s):  
Dmitriy A. Roshchin

The problem of improving the accuracy of digital terrain models created for monitoring and diagnostics of the railway track and the surrounding area is considered. A technical solution to this problem is presented, which includes a method for joint aerial photography and laser scanning, as well as a method for digital processing of the obtained data. The relevance of using this solution is due to the existence of zones of weak reception of signals from the global navigation satellite system, since in these zones the accuracy of constructing digital terrain models using currently used diagnostic spatial scanning systems is reduced. The technical solution is based on the method of digital processing of aerial photographs of the railway track. In this case, as elements of external orientation, the threads of the rail track located at a normalized distance from each other are used. The use of this method made it possible to increase the accuracy of determining the flight path of an aircraft over railway tracks and, as a result, the accuracy of calculating the coordinates of points on the earth's surface. As a result, a digital terrain model was created that is suitable for diagnostics and monitoring the condition of the railway trackbed. During simulation modeling, it was found that the application of the proposed method allowed to reduce to 50 % the confidence interval of the distribution of the error in determining the coordinates of points on the terrain and increase the accuracy of forming a digital terrain model. This promising technical solution for improving the accuracy of digital terrain models for railway track diagnostics is implemented using unmanned aerial vehicles that are part of the mobile diagnostic complex. The advantages of the proposed solution include high efficiency and availability of application.


Author(s):  
M. Kosmatin Fras ◽  
A. Kerin ◽  
M. Mesarič ◽  
V. Peterman ◽  
D. Grigillo

Production of digital terrain model (DTM) is one of the most usual tasks when processing photogrammetric point cloud generated from Unmanned Aerial System (UAS) imagery. The quality of the DTM produced in this way depends on different factors: the quality of imagery, image orientation and camera calibration, point cloud filtering, interpolation methods etc. However, the assessment of the real quality of DTM is very important for its further use and applications. In this paper we first describe the main steps of UAS imagery acquisition and processing based on practical test field survey and data. The main focus of this paper is to present the approach to DTM quality assessment and to give a practical example on the test field data. For data processing and DTM quality assessment presented in this paper mainly the in-house developed computer programs have been used. The quality of DTM comprises its accuracy, density, and completeness. Different accuracy measures like RMSE, median, normalized median absolute deviation and their confidence interval, quantiles are computed. The completeness of the DTM is very often overlooked quality parameter, but when DTM is produced from the point cloud this should not be neglected as some areas might be very sparsely covered by points. The original density is presented with density plot or map. The completeness is presented by the map of point density and the map of distances between grid points and terrain points. The results in the test area show great potential of the DTM produced from UAS imagery, in the sense of detailed representation of the terrain as well as good height accuracy.


Author(s):  
Dimitris Kaimaris ◽  
Petros Patias ◽  
Olga Georgoula

The interpretation of photos and the processing of Google Earth imagery which allowed the “random” discovery, as a result of a non-systematical research, of a numerous marks of buried constructions in the wide area of the city of Larisa (Thessaly, Greece) is presented in this project. Additional data as aerial photographs over time, satellite images and the digital terrain model of the same area has been used. From the numerous marks, this project mainly focuses on three positions where the positive marks (soilmarks or/and cropmarks), circular or/and linear, reveal on a satisfying level covered construction of great dimensions. The ongoing research activity of the editorial team along with this research highlights the advantages of using Google Earth imagery in an attempt to “random” mark of unknown covered constructions, or, in the frame of a systematic survey of aerial and remote sensing archaeology, as additional and not exclusive source of information.


2019 ◽  
Vol 8 (1) ◽  
pp. 37 ◽  
Author(s):  
Jitka Elznicová ◽  
Tomáš Matys Grygar ◽  
Jan Popelka ◽  
Martin Sikora ◽  
Petr Novák ◽  
...  

As fluvial pollution may endanger the quality of water and solids transported by rivers, mapping and evaluation of historically polluted fluvial sediments is an urgent topic. The Ploučnice River and its floodplain were polluted by local uranium mining from 1971–1989. We have studied this river since 2013 using a combination of diverse methods, including geoinformatics, to identify pollution hotspots in floodplains and to evaluate the potential for future reworking. Archival information on pollution history and past flooding was collected to understand floodplain dynamics and pollution heterogeneity. Subsequently, a digital terrain model based on laser scanning data and data analysis were used to identify the sites with river channel shifts. Finally, non-invasive geochemical mapping was employed, using portable X-ray fluorescence and gamma spectrometers. The resulting datasets were processed with geostatistical tools. One of the main outputs of the study was a detailed map of pollution distribution in the floodplain. The results showed a relationship between polluted sediment deposition, past channel shifts and floodplain development. We found that increased concentration of pollution occurred mainly in the cut-off meanders and lateral channel deposits from the mining period, the latter in danger of reworking (reconnecting to the river) in the coming decades.


2015 ◽  
Vol 47 (3) ◽  
pp. 121-135
Author(s):  
Jerzy Siwek ◽  
Wojciech Wacławik

Abstract Despite numerous theoretical and experimental studies of analytical relief shading, devised about half a century ago, its quality has not yet reached the excellence of traditional (manual) shading. The paper discusses its basic principles and the main factors affecting the quality of shading. It also stresses the crucial importance of the digital terrain model used as the basis for shading as well as the proper generalization of the relief. Experiments with shading modules of ArcGIS and Surfer, aiming to explore the functionality of algorithms they employ, have demonstrated significant similarity of the results. In conclusion, the authors attempt to answer the question posted in the title of the article. In their view, analytical shading is not art because shading algorithms are incapable of producing the visually beautiful effects that an experienced cartographer with artistic talents can create.


Author(s):  
M. Rybansky ◽  
M. Brenova ◽  
P. Zerzan ◽  
J. Simon ◽  
T. Mikita

The digital terrain model (DTM) represents the bare ground earth's surface without any objects like vegetation and buildings. In contrast to a DTM, Digital surface model (DSM) represents the earth's surface including all objects on it. The DTM mostly does not change as frequently as the DSM. The most important changes of the DSM are in the forest areas due to the vegetation growth. Using the LIDAR technology the canopy height model (CHM) is obtained by subtracting the DTM and the corresponding DSM. The DSM is calculated from the first pulse echo and DTM from the last pulse echo data. The main problem of the DSM and CHM data using is the actuality of the airborne laser scanning. <br><br> This paper describes the method of calculating the CHM and DSM data changes using the relations between the canopy height and age of trees. To get a present basic reference data model of the canopy height, the photogrammetric and trigonometric measurements of single trees were used. Comparing the heights of corresponding trees on the aerial photographs of various ages, the statistical sets of the tree growth rate were obtained. These statistical data and LIDAR data were compared with the growth curve of the spruce forest, which corresponds to a similar natural environment (soil quality, climate characteristics, geographic location, etc.) to get the updating characteristics.


2017 ◽  
Vol 21 (4) ◽  
pp. 197-204
Author(s):  
Maciej Góraj ◽  
Marcin Kucharski ◽  
Krzysztof Karsznia ◽  
Izabela Karsznia ◽  
Jarosław Chormański

AbstractThe main objective of this study is to evaluate the changes in the hydrographic network of Słowiński National Park. The authors analysed the changes occurring in the drainage network due to limited maintenance in this legally protected natural area. To accomplish this task, elaborations prepared on the basis of aerial photographs were used: an orthophoto map from 1996, hyperspectral imaging from June 2015, and a digital terrain model based on airborne laser scanning (ALS) from June 2015. These spatial data resources enabled the digitisation of the water courses for which selected hydro-morphological features had been defined. As a result of analysing the differences of these features, a quality map was elaborated which was then subjected to interpretation, and the identified changes were quantified in detail.


Author(s):  
M. R. M. Salleh ◽  
Z. Ismail ◽  
M. Z. A. Rahman

Airborne Light Detection and Ranging (LiDAR) technology has been widely used recent years especially in generating high accuracy of Digital Terrain Model (DTM). High density and good quality of airborne LiDAR data promises a high quality of DTM. This study focussing on the analysing the error associated with the density of vegetation cover (canopy cover) and terrain slope in a LiDAR derived-DTM value in a tropical forest environment in Bentong, State of Pahang, Malaysia. Airborne LiDAR data were collected can be consider as low density captured by Reigl system mounted on an aircraft. The ground filtering procedure use adaptive triangulation irregular network (ATIN) algorithm technique in producing ground points. Next, the ground control points (GCPs) used in generating the reference DTM and these DTM was used for slope classification and the point clouds belong to non-ground are then used in determining the relative percentage of canopy cover. The results show that terrain slope has high correlation for both study area (0.993 and 0.870) with the RMSE of the LiDAR-derived DTM. This is similar to canopy cover where high value of correlation (0.989 and 0.924) obtained. This indicates that the accuracy of airborne LiDAR-derived DTM is significantly affected by terrain slope and canopy caver of study area.


Author(s):  
Dimitris Kaimaris ◽  
Petros Patias ◽  
Olga Georgoula

The interpretation of photos and the processing of Google Earth imagery which allowed the “random” discovery, as a result of a non-systematical research, of a numerous marks of buried constructions in the wide area of the city of Larisa (Thessaly, Greece) is presented in this project. Additional data as aerial photographs over time, satellite images and the digital terrain model of the same area has been used. From the numerous marks, this project mainly focuses on three positions where the positive marks (soilmarks or/and cropmarks), circular or/and linear, reveal on a satisfying level covered construction of great dimensions. The ongoing research activity of the editorial team along with this research highlights the advantages of using Google Earth imagery in an attempt to “random” mark of unknown covered constructions, or, in the frame of a systematic survey of aerial and remote sensing archaeology, as additional and not exclusive source of information.


Author(s):  
T. Krauß

Very high resolution (VHR) DSMs (digital surface models) derived from stereo- or multi-stereo images from current VHR satellites like WorldView-2 or Pléiades can be produced up to the ground sampling distance (GSD) of the sensors in the range of 50 cm to 1 m. From such DSMs the digital terrain model (DTM) representing the ground and also a so called nDEM (normalized digital elevation model) describing the height of objects above the ground can be derived. In parallel these sensors deliver multispectral imagery which can be used for a spectral classification of the imagery. Fusion of the multispectral classification and the nDEM allows a simple classification and detection of urban objects. In further processing steps these detected urban objects can be modeled and exported in a suitable description language like CityGML. In this work we present the pre-processing steps up to the classification and detection of the urban objects. The modeling is not part of this work. The pre-processing steps described here cover briefly the coregistration of the input images and the generation of the DSM. In more detail the improvement of the DSM, the extraction of the DTM and nDEM, the multispectral classification and the object detection and extraction are explained. The methods described are applied to two test regions from two satellites: First the center of Munich acquired by WorldView-2 and second the center of Melbourne acquired by Pl´eiades. From both acquisitions a stereo-pair from the panchromatic bands is used for creation of the DSM and the pan-sharpened multispectral images are used for spectral classification. Finally the quality of the detected urban objects is discussed.


Sign in / Sign up

Export Citation Format

Share Document