scholarly journals The Characteristics Of Extreme Maximum Runoff Of The Rivers Of Armenia In The Context Of Global Climate Change

2021 ◽  
Vol 14 (1) ◽  
pp. 196-208
Author(s):  
Trahel G. Vardanyan ◽  
Natalia L. Frolova ◽  
Hrachuhi S. Galstyan

The study concerned the analysis of temporal and spatial variability of floods in the Republic of Armenia (RA). While there are number of reports on flood formation of rivers in RA, the literature lacks results on using nonparametric test results to analyze this disastrous phenomenon. For that purpose, the dynamics of changes in extreme maximum instantaneous runoff, as well as air temperature and precipitation database was evaluated and compared between 1960–2012 for 27 hydrometrical observational and 35 meteorological stations in RA. The Mann-Kendall test with consideration of the autocorrelation function was employed as a non-parametric testto identify any present trends. An increasing tendency of air temperature, decreasing tendency of the atmospheric precipitation and extreme maximum instantaneous river runoff were identified in the studied river-basins. As expected, the warming climate contributed to a gradual melting of accumulated snow in the river-basins in winter, resulting in changes in the extreme maximum instantaneous runoff of the rivers in spring, which significantly reduces the risk of the flood occurrence. Thus, it can be claimed that almost all the river basins of Armenia have a tendency to reduce the risk of floods due to global climate change.

2020 ◽  
Vol 149 ◽  
pp. 03010
Author(s):  
Varduhi Margaryan ◽  
Elena Fedotova

The paper analyzes the peculiarities of formation of the absolute maximum runoff of the Marmarik river evaluates the patterns of multi-year fluctuations of maximum runoff rates in different river sites and gives a forecast of the maximum runoff in the context of global climate change. Absolute values of the maximum river runoff for different scenarios of climate change are estimated. The actual observational data of Armhydromet for maximum runoff rate, the air temperature and precipitation were used as the source material. As a result of the study, it turned out that there is only a tendency to decrease in the values of maximum runoff. It turned out that for all scenarios and cases in the Marmarik river basin, a different degree of changes in the maximum flow is observed. Moreover, the largest decrease in the maximum runoff of the Marmarik river basin is expected under the conditions of an increase in the average air temperature of the spring season by 2,7—3,9 degrees Celsius and a decrease in the amount of spring atmospheric precipitation by 2,4—2,6 %.


2007 ◽  
Vol 38 (4-5) ◽  
pp. 401-412 ◽  
Author(s):  
A. Reihan ◽  
T. Koltsova ◽  
J. Kriauciuniene ◽  
L. Lizuma ◽  
D. Meilutyte-Barauskiene

The river discharge changes in three Baltic States and its relation to changes in the main climatic variables such as precipitation and air temperature were analyzed using observed data and methods of empirical statistical analysis. The study is important for the development of efficient water resource management systems and validation of climate change impact models. The application of the Mann-Kendall test reveals that a significant increasing trend in winter air temperature and precipitation was determined for all 3 investigated periods (1923–2003, 1941–2003 and 1961–2003). The same trend was found for the winter and annual discharge time series. No trend was observed for the spring, summer and autumn seasonal streamflow and summer low flow series for most of the Baltic region. In general the relation between the main meteorological and hydrological parameters and the tendency in river discharge trends is common for all of the Baltic States, and might be associated with the regional impacts of global climate change.


2019 ◽  
Vol 1155 ◽  
pp. 012070 ◽  
Author(s):  
Ali Rahmat ◽  
Muhammad Khoiru Zaki ◽  
Irwan Effendi ◽  
Abdul Mutolib ◽  
Helvi Yanfika ◽  
...  

2014 ◽  
Vol 126 (3-4) ◽  
pp. 177-192 ◽  
Author(s):  
Javad Abolverdi ◽  
Ghasem Ferdosifar ◽  
Davar Khalili ◽  
Ali Akbar Kamgar-Haghighi ◽  
Mohammad Abdolahipour Haghighi

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong Zhang ◽  
Lu-yu Liu ◽  
Yi Liu ◽  
Man Zhang ◽  
Cheng-bang An

AbstractWithin the mountain altitudinal vegetation belts, the shift of forest tree lines and subalpine steppe belts to high altitudes constitutes an obvious response to global climate change. However, whether or not similar changes occur in steppe belts (low altitude) and nival belts in different areas within mountain systems remain undetermined. It is also unknown if these, responses to climate change are consistent. Here, using Landsat remote sensing images from 1989 to 2015, we obtained the spatial distribution of altitudinal vegetation belts in different periods of the Tianshan Mountains in Northwestern China. We suggest that the responses from different altitudinal vegetation belts to global climate change are different. The changes in the vegetation belts at low altitudes are spatially different. In high-altitude regions (higher than the forest belts), however, the trend of different altitudinal belts is consistent. Specifically, we focused on analyses of the impact of changes in temperature and precipitation on the nival belts, desert steppe belts, and montane steppe belts. The results demonstrated that the temperature in the study area exhibited an increasing trend, and is the main factor of altitudinal vegetation belts change in the Tianshan Mountains. In the context of a significant increase in temperature, the upper limit of the montane steppe in the eastern and central parts will shift to lower altitudes, which may limit the development of local animal husbandry. The montane steppe in the west, however, exhibits the opposite trend, which may augment the carrying capacity of pastures and promote the development of local animal husbandry. The lower limit of the nival belt will further increase in all studied areas, which may lead to an increase in surface runoff in the central and western regions.


2021 ◽  
Vol 325 ◽  
pp. 08010
Author(s):  
Gita Ivana Suci Lestari Faski ◽  
Ignasius Loyola Setyawan Purnama

Global climate change that occurred in this century can affect the pattern of rain and increase in temperature on earth. This study aims to determine and analyze the increase in rainfall, air temperature, potential evapotranspiration and actual evapotranspiration in the Bengkulu watershed. For this reason, the regional rainfall is calculated using the Thiessen Polygon, the mean air temperature of the watershed based on the median elevation, potential evapotranspiration using the Thornthwaite Method and actual evapotranspiration using the basis of the difference in rainfall to potential evapotranspiration. The results showed that every year there was an increase in rainfall, air temperature, potential evapotranspiration and actual evapotranspiration in the Bengkulu Watershed. In the 2009-2013 period, the average annual rainfall of 3,581 mm increased to 3,641 mm in the 2014-2018 period. For air temperature, the average monthly air temperature in the Bengkulu Watershed for the 2009-2013 period was 25.8°C, while the air temperature in the 2014-2018 period was 26.1°C. This means that in a period of 5 years there is an increase in temperature of 0.3°C. Furthermore, due to the increase in air temperature, there was an increase in the average monthly potential evapotranspiration from the 2009-2013 period to the 2014-2018 period, namely from 1,493 mm to 1,537 mm, while for actual evapotranspiration there was an increase from 1,486 mm to 1,518 mm.


2020 ◽  
Author(s):  
Andrea Castelletti ◽  
Matteo Giuliani ◽  
Jonathan Lamontagne ◽  
Mohamad Hejazi ◽  
Patrick Reed

Abstract Emerging climate change mitigation policies focus on the implementation of global measures relying on carbon prices to attain rapid emissions reductions, with limited consideration for the impacts of global policies at local scales. Here, we use the Zambezi River Basin in Southern Africa to demonstrate how local multisector dynamics across interconnected Water-Energy-Food (WEF) systems are impacted by global climate change mitigation policies. Our analysis provides quantitative evidence of the unintended vulnerabilities that emerge for this basin across a broad array of potential climate and socio-economic futures. Our results indicate that climate change mitigation policies related to land use change emissions can have negative side effects on local water demands, generating increased risks for failures across all the components of the WEF systems in the Zambezi River Basin. Analogous vulnerabilities could impact many river basins in Southern and Western Africa. It is critical to connect global climate change mitigation policies to local regional dynamics to better navigate the full range of possible future scenarios while supporting policy makers in prioritizing sustainable mitigation and adaptation solutions.


Author(s):  
L. E. Nazarova

As a result of the statistical analysis of the meteorological and water balance data for Onego Lake watershed over the period 1950-2000, noticeable changes were detected. It was found that time series of annual air temperature, precipitation and evapotranspiration over 50-year period contains positive linear trends, but no change in total streamflow to the lake has so far followed. Potential changes in the regional climate and hydrological regime for the period 2000-2050 were estimated using the results of numerical modeling with the ECHAM4/OPYC3 model for two scenarios of the global climate change. The estimation of these data shows that a general tendency to increase of annual air temperature and precipitation will remain in the new climate Mean annual precipitation will increase about 30-50 mm, mean average annual air temperature for the next 50-years period will rise from 1.6 up to 2.7-3.0 °C. Our estimation shows that for both scenarios all water balance parameters, excluding river runoff, will increase.


Sign in / Sign up

Export Citation Format

Share Document