scholarly journals Age-related changes in the nervous apparatus of the blood vessels in the spinal cord

2013 ◽  
Vol 17 (3 (67) p.1) ◽  
pp. 122-124
Author(s):  
Yu. I. Pigolkin ◽  
G. V. Zolotenkova

This paper was designed to study changes in the nervous apparatus of the blood vessels in the spinal cord with a view to determining the biological age of man. The pial and intramedullary vascular systems of the brain and spinal cord were examined in different periods of postnatal ontogenesis (between the age of 1 to 90 years). The data obtained on the age-related rearrangement of the nervous apparatus of the spinocerebral arterial vessels can also be used for the solution of practical problems encountered in the practical work of forensic medical experts.

Author(s):  
Asmira Gacic ◽  
Hakija Beculic ◽  
Rasim Skomorac ◽  
Alma Efendic

Glioblastoma, also known as glioblastoma multiforme, is an aggressive type of cancer that is made up of abnormal astrocytic cells, but also contain a mixture of different cell types (including blood vessels) and areas of necrosis. It is often seen in the brain and spinal cord, but glioblastomas are rarely found in the third ventricle. In this case, it was diagnosed in a 22-year-old male patient and we intended to draw


Biomedicines ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 446
Author(s):  
Tamotsu Tsukahara ◽  
Hisao Haniu ◽  
Takeshi Uemura ◽  
Yoshikazu Matsuda

It is widely accepted that microglia-mediated inflammation contributes to the progression of neurodegenerative diseases; however, the precise mechanisms through which these cells contribute remain to be elucidated. Microglia, as the primary immune effector cells of the brain, play key roles in maintaining central nervous system (CNS) homeostasis. Microglia are located throughout the brain and spinal cord and may account for up to 15% of all cells in the brain. Activated microglia express pro-inflammatory cytokines that act on the surrounding brain and spinal cord. Microglia may also play a detrimental effect on nerve cells when they gain a chronic inflammatory function and promote neuropathologies. A key feature of microglia is its rapid morphological change upon activation, characterized by the retraction of numerous fine processes and the gradual acquisition of amoeba-like shapes. These morphological changes are also accompanied by the expression and secretion of inflammatory molecules, including cytokines, chemokines, and lipid mediators that promote systemic inflammation during neurodegeneration. This may be considered a protective response intended to limit further injury and initiate repair processes. We previously reported that porcine liver decomposition product (PLDP) induces a significant increase in the Hasegawa’s Dementia Scale-Revised (HDS-R) score and the Wechsler Memory Scale (WMS) in a randomized, double-blind, placebo-controlled study in healthy humans. In addition, the oral administration of porcine liver decomposition product enhanced visual memory and delayed recall in healthy adults. We believe that PLDP is a functional food that aids cognitive function. In this review, we provide a critical assessment of recent reports of lysophospholipids derived from PLDP, a rich source of phospholipids. We also highlight some recent findings regarding bidirectional interactions between lysophospholipids and microglia and age-related neurodegenerative diseases such as dementia and Alzheimer’s disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shaona Acharjee ◽  
Paul M. K. Gordon ◽  
Benjamin H. Lee ◽  
Justin Read ◽  
Matthew L. Workentine ◽  
...  

AbstractMicroglia play an important role in the pathogenesis of multiple sclerosis and the mouse model of MS, experimental autoimmune encephalomyelitis (EAE). To more fully understand the role of microglia in EAE we characterized microglial transcriptomes before the onset of motor symptoms (pre-onset) and during symptomatic EAE. We compared the transcriptome in brain, where behavioral changes are initiated, and spinal cord, where damage is revealed as motor and sensory deficits. We used a RiboTag strategy to characterize ribosome-bound mRNA only in microglia without incurring possible transcriptional changes after cell isolation. Brain and spinal cord samples clustered separately at both stages of EAE, indicating regional heterogeneity. Differences in gene expression were observed in the brain and spinal cord of pre-onset and symptomatic animals with most profound effects in the spinal cord of symptomatic animals. Canonical pathway analysis revealed changes in neuroinflammatory pathways, immune functions and enhanced cell division in both pre-onset and symptomatic brain and spinal cord. We also observed a continuum of many pathways at pre-onset stage that continue into the symptomatic stage of EAE. Our results provide additional evidence of regional and temporal heterogeneity in microglial gene expression patterns that may help in understanding mechanisms underlying various symptomology in MS.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii41-ii41
Author(s):  
Junjie Zhen ◽  
Lei Wen ◽  
Shaoqun Li ◽  
Mingyao Lai ◽  
Changguo Shan ◽  
...  

Abstract BACKGROUND According to EANO-ESMO clinical practice guidelines, the MRI findings of LM are divided into 4 types, namely linear enhancement (type A), nodular enhancement (type B), linear combined with nodular enhancement (type C), and sign of hydrocephalus (type D). METHODS The MRI features of brain and spinal cord in patients diagnosed with NSCLC-LM in Guangdong Sanjiu Brain Hospital from 2010 until 2019 were investigated, and then were classified into 4 types. The imaging features were analyzed. RESULTS A total of 80 patients were enrolled in the study. The median age of the patients was 53.5 years old, and the median time from the initial diagnosis to the confirmed diagnosis of LM was 11.6 months. The results of enhanced MRI examination of the brain in 79 cases showed that the number of cases with enhancements of type A, B, C and D were 50 (63.3%), 0, 26 (32.9%) and 3 (3.8%), respectively, and that LM with metastases to the brain parenchyma was found in 42 cases (53.2%). The results of enhanced MRI examination of spinal cord in 59 cases showed that there were only enhancements of type A and C in 40 cases (67.8%) and 3 cases (5.0%), and no enhancement sign in the other 16 cases (27.2%). CONCLUSION MRI examination of brain and spinal cord will improve the detection rate of LM. The MRI features of NSCLC-LM in real world are mainly characterized by the linear enhancements of brain and spinal cord, followed by linear combined with nodular enhancement. The enhancements of type B and type D are rare in clinic. Almost half of the patients have LM and metastases to the brain parenchyma. Therefore, the differentiation of tumor metastases is needed to be paid attention to for the early diagnosis and the formulation of reasonable treatment plans.


1917 ◽  
Vol 25 (4) ◽  
pp. 557-580 ◽  
Author(s):  
Carroll G. Bull

Streptococci cultivated from the tonsils of thirty-two cases of poliomyelitis were used to inoculate various laboratory animals. In no case was a condition induced resembling poliomyelitis clinically or pathologically in guinea pigs, dogs, cats, rabbits, or monkeys. On the other hand, a considerable percentage of the rabbits and a smaller percentage of some of the other animals developed lesions due to streptococci. These lesions consisted of meningitis, meningo-encephalitis, abscess of the brain, arthritis, tenosynovitis, myositis, abscess of the kidney, endocarditis, pericarditis, and neuritis. No distinction in the character or frequency of the lesions could be determined between the streptococci derived from poliomyelitic patients and from other sources. Streptococci isolated from the poliomyelitic brain and spinal cord of monkeys which succumbed to inoculation with the filtered virus failed to induce in monkeys any paralysis or the characteristic histological changes of poliomyelitis. These streptococci are regarded as secondary bacterial invaders of the nervous organs. Monkeys which have recovered from infection with streptococci derived from cases of poliomyelitis are not protected from infection with the filtered virus, and their blood does not neutralize the filtered virus in vitro. We have failed to detect any etiologic or pathologic relationship between streptococci and epidemic poliomyelitis in man or true experimental poliomyelitis in the monkey.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Song Cao ◽  
Daniel W. Fisher ◽  
Guadalupe Rodriguez ◽  
Tian Yu ◽  
Hongxin Dong

Abstract Background The role of microglia in Alzheimer’s disease (AD) pathogenesis is becoming increasingly important, as activation of these cell types likely contributes to both pathological and protective processes associated with all phases of the disease. During early AD pathogenesis, one of the first areas of degeneration is the locus coeruleus (LC), which provides broad innervation of the central nervous system and facilitates norepinephrine (NE) transmission. Though the LC-NE is likely to influence microglial dynamics, it is unclear how these systems change with AD compared to otherwise healthy aging. Methods In this study, we evaluated the dynamic changes of neuroinflammation and neurodegeneration in the LC-NE system in the brain and spinal cord of APP/PS1 mice and aged WT mice using immunofluorescence and ELISA. Results Our results demonstrated increased expression of inflammatory cytokines and microglial activation observed in the cortex, hippocampus, and spinal cord of APP/PS1 compared to WT mice. LC-NE neuron and fiber loss as well as reduced norepinephrine transporter (NET) expression was more evident in APP/PS1 mice, although NE levels were similar between 12-month-old APP/PS1 and WT mice. Notably, the degree of microglial activation, LC-NE nerve fiber loss, and NET reduction in the brain and spinal cord were more severe in 12-month-old APP/PS1 compared to 12- and 24-month-old WT mice. Conclusion These results suggest that elevated neuroinflammation and microglial activation in the brain and spinal cord of APP/PS1 mice correlate with significant degeneration of the LC-NE system.


1997 ◽  
Vol 93 (3) ◽  
pp. 233-240 ◽  
Author(s):  
M. Ueno ◽  
Ichiro Akiguchi ◽  
Masanori Hosokawa ◽  
Masahiko Shinnou ◽  
Haruhiko Sakamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document