scholarly journals Promising methods for noninvasive medical diagnosis based on the use of nanoparticles: surface-enhanced raman spectroscopy in the study of cells, cell organelles and neurotransmitter metabolism markers

Author(s):  
E.A. Goodilin ◽  
A.A. Semenova ◽  
O.E. Eremina ◽  
N.A. Brazhe ◽  
E.A. Goodilinа ◽  
...  

Application of advances in nanomedicine and materials science to medical diagnostics is a promising area of research. Surface-enhanced Raman spectroscopy (SERS) is an innovative analytical method that exploits noble metal nanoparticles to noninvasively study cells, cell organelles and protein molecules. Below, we summarize the literature on the methods for early clinical diagnosis of some neurodegenerative and neuroendocrine diseases. We discuss the specifics, advantages and limitations of different diagnostic techniques based on the use of low- and high molecular weight biomarkers. We talk about the prospects of optical methods for rapid diagnosis of neurotransmitter metabolism disorders. Special attention is paid to new approaches to devising optical systems that expand the analytical potential of SERS, the tool that demonstrates remarkable sensitivity, selectivity and reproducibility of the results in determining target analytes in complex biological matrices.

2016 ◽  
Vol 26 (3) ◽  
pp. 177-186 ◽  
Author(s):  
Anna A. Semenova ◽  
Alexander P. Semenov ◽  
Elena A. Gudilina ◽  
Galina T. Sinyukova ◽  
Nadezhda A. Brazhe ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7443
Author(s):  
Jorge Jimenez-Cisneros ◽  
Juan Pablo Galindo-Lazo ◽  
Miguel Angel Mendez-Rojas ◽  
Jessica Rosaura Campos-Delgado ◽  
Monica Cerro-Lopez

As surface-enhanced Raman spectroscopy (SERS) continues developing to be a powerful analytical tool for several probes, four important aspects to make it more accessible have to be addressed: low-cost, reproducibility, high sensibility, and recyclability. Titanium dioxide nanotubes (TiO2 NTs) prepared by anodization have attracted interest in this field because they can be used as safe solid supports to deposit metal nanoparticles to build SERS substrate nanoplatforms that meet these four desired aspects. TiO2 NTs can be easily prepared and, by varying different synthesis parameters, their dimensions and specific features of their morphology can be tuned allowing them to support metal nanoparticles of different sizes that can achieve a regular dispersion on their surface promoting high enhancement factors (EF) and reproducibility. Besides, the TiO2 photocatalytic properties enable the substrate’s self-cleaning property for recyclability. In this review, we discuss the different methodological strategies that have been tested to achieve a high performance of the SERS substrates based on TiO2 NTs as solid support for the three main noble metal nanoparticles mainly studied for this purpose: Ag, Au, and Pt.


2018 ◽  
Vol 9 ◽  
pp. 1977-1985 ◽  
Author(s):  
Emre Gürdal ◽  
Simon Dickreuter ◽  
Fatima Noureddine ◽  
Pascal Bieschke ◽  
Dieter P Kern ◽  
...  

The fabrication and optical characterization of self-assembled arrangements of rough gold nanoparticles with a high area coverage and narrow gaps for surface-enhanced Raman spectroscopy (SERS) are reported. A combination of micellar nanolithography and electroless deposition (ED) enables the tuning of the spacing and size of the noble metal nanoparticles. Long-range ordered quasi-hexagonal arrays of gold nanoparticles on silicon substrates with a variation of the particle sizes from about 20 nm to 120 nm are demonstrated. By increasing the particle sizes for the homogeneously spaced particles, a large number of narrow gaps is created, which together with the rough surface of the particles induces a high density of intense hotspots. This makes the surfaces interesting for future applications in near-field-enhanced bio-analytics of molecules. SERS was demonstrated by measuring Raman spectra of 4-MBA on the gold nanoparticles. It was verified that a smaller inter-particle distance leads to an increased SERS signal.


2017 ◽  
Author(s):  
Caitlin S. DeJong ◽  
David I. Wang ◽  
Aleksandr Polyakov ◽  
Anita Rogacs ◽  
Steven J. Simske ◽  
...  

Through the direct detection of bacterial volatile organic compounds (VOCs), via surface enhanced Raman spectroscopy (SERS), we report here a reconfigurable assay for the identification and monitoring of bacteria. We demonstrate differentiation between highly clinically relevant organisms: <i>Escherichia coli</i>, <i>Enterobacter cloacae</i>, and <i>Serratia marcescens</i>. This is the first differentiation of bacteria via SERS of bacterial VOC signatures. The assay also detected as few as 10 CFU/ml of <i>E. coli</i> in under 12 hrs, and detected <i>E. coli</i> from whole human blood and human urine in 16 hrs at clinically relevant concentrations of 10<sup>3</sup> CFU/ml and 10<sup>4</sup> CFU/ml, respectively. In addition, the recent emergence of portable Raman spectrometers uniquely allows SERS to bring VOC detection to point-of-care settings for diagnosing bacterial infections.


Sign in / Sign up

Export Citation Format

Share Document