scholarly journals Role of honeycomb structure in improving the melting process of a phase change material inside a latent heat storage unit

2021 ◽  
Vol 19 ◽  
pp. 589-592
Author(s):  
M. Hariss ◽  
◽  
M. El Alami ◽  
A. Gounni

In this work, a numerical study is performed to analyze the impact of honeycomb structure on heat transfer within the PCM. The modeling is based on a transient calculation making it possible to analyze the phase change of the paraffin using the commercial software "Fluent" based on the enthalpy-porosity model. The results showed that the impregnation of a metal matrix in a rectangular enclosure helps to decrease the melting time and thus improve the heat transfer within the PCM.

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1425
Author(s):  
Tarek Bouzennada ◽  
Farid Mechighel ◽  
Kaouther Ghachem ◽  
Lioua Kolsi

A 2D-symmetric numerical study of a new design of Nano-Enhanced Phase change material (NEPCM)-filled enclosure is presented in this paper. The enclosure is equipped with an inner tube allowing the circulation of the heat transfer fluid (HTF); n-Octadecane is chosen as phase change material (PCM). Comsol-Multiphysics commercial code was used to solve the governing equations. This study has been performed to examine the heat distribution and melting rate under the influence of the inner-tube position and the concentration of the nanoparticles dispersed in the PCM. The inner tube was located at three different vertical positions and the nanoparticle concentration was varied from 0 to 0.06. The results revealed that both heat transfer/melting rates are improved when the inner tube is located at the bottom region of the enclosure and by increasing the concentration of the nanoparticles. The addition of the nanoparticles enhances the heat transfer due to the considerable increase in conductivity. On the other hand, by placing the tube in the bottom area of the enclosure, the liquid PCM gets a wider space, allowing the intensification of the natural convection.


2019 ◽  
Vol 18 (1) ◽  
pp. 78
Author(s):  
F. C. Spengler ◽  
B. Oliveira ◽  
R. C. Oliveski ◽  
L. A. O. Rocha

The thermal heat storage it’s an effective way to suit the energy availability with the demand schedule. It can be stored in the means of sensible or latent heat, the latter applying a material denominated Phase Change Material (PCM), which is provided as organic compounds, hydrated salts, paraffins, among others. The latent heat storage systems offer several advantages, like the practically isothermal process of loading and unloading and the high energy density. However, the low thermal conductivity makes the cycle prolonged on these systems, restricting its applicability. Applying computational fluid dynamics, the behavior of the PCM melting process was studied in cylindrical cavities with horizontal and vertical fins, aiming the optimization of the fin geometry. In this way the fin area was kept constant, varying its aspect ratio. The numerical model was validated with results from the literature and it’s composed of the continuity, momentum and energy equations increased by the phase change model. Qualitative and quantitative results are presented, referring to mesh independence, contours of velocity, net fraction and temperature at different moments of the process. The results of the study indicate that the position of the fin in the heat exchanger influences the melting process, although the vertical fins have a faster total melting process, horizontal fins can reach larger partial liquid fractions in less time in the heat exchanger. Such as the position of the fin, the increase of its length propitiates the reduction of the melting time, evidencing the optimal aspect ratio.


2021 ◽  
pp. 1-16
Author(s):  
Nesrine Boulaktout ◽  
El-Hacène Mezaache ◽  
Mohamed Teggar ◽  
Müslüm Arici ◽  
K.A.R. Ismail ◽  
...  

Abstract Immersion of fins in latent heat thermal energy storage systems has been used as an influential approach to remedy the poor thermal conductivity of phase-change materials. Present paper numerically investigates heat transfer and phase change improvement by means of longitudinal fins in a shell and tube thermal energy storage unit. The main aim of this study is to investigate the effect of fin orientation on the performance of the storage unit. Six configurations of different fin numbers (2, 4 and 8 fins) and orientations (π/2, π/4, and π/8) are tested. For simulations, a 2D mathematical model incorporating the enthalpy-porosity method and finite volume techniques are established and solved by ANSYS-Fluent. The numerical predictions are successfully validated by comparison with experimental and numerical data from the literature. Heat transfer characteristics and melting process are analyzed through streamlines, isotherms, mean temperature, heat flux and heat transfer coefficient as well as transient melting front position and liquid fractions. Results show that orientation of fins has significant impact on the charging time for two cases (2 and 4 fins) whereas no significant reduction in charging time was obtained for the case of 8 fins. In case of utilizing 2 fins, a fin orientation of 0° (vertical fins) shortens the charging time by up to 2.5 folds compared to the horizontal fins (90°). These results could help designing efficient latent thermal energy storage units.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1289
Author(s):  
Mohammad Ghalambaz ◽  
Amir Hossein Eisapour ◽  
Hayder I. Mohammed ◽  
Mohammad S. Islam ◽  
Obai Younis ◽  
...  

The melting process of a multi-tube’s thermal energy storage system in the existence of free convection effects is a non-linear and important problem. The placement of heated tubes could change the convective thermal circulation. In the present study, the impact of the position of seven heat exchanger tubes was systematically investigated. The energy charging process was numerically studied utilizing liquid fraction and stored energy with exhaustive temperature outlines. The tubes of heat transfer fluid were presumed in the unit with different locations. The unit’s heat transfer behavior was assessed by studying the liquid fraction graphs, streamlines, and isotherm contours. Each of the design factors was divided into four levels. To better investigate the design space for the accounted five variables and four levels, an L16 orthogonal table was considered. Changing the location of tubes could change the melting rate by 28%. The best melting rate was 94% after four hours of charging. It was found that the tubes with close distance could overheat each other and reduce the total heat transfer. The study of isotherms and streamlines showed the general circulation of natural convection flows at the final stage of melting was the most crucial factor in the melting of top regions of the unit and reduces the charging time. Thus, particular attention to the tubes’ placement should be made so that the phase change material could be quickly melted at both ends of a unit.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1496
Author(s):  
Mohammad Ghalambaz ◽  
S.A.M. Mehryan ◽  
Ahmad Hajjar ◽  
Mohammad Yacoub Al Shdaifat ◽  
Obai Younis ◽  
...  

A wavy shape was used to enhance the thermal heat transfer in a shell-tube latent heat thermal energy storage (LHTES) unit. The thermal storage unit was filled with CuO–coconut oil nano-enhanced phase change material (NePCM). The enthalpy-porosity approach was employed to model the phase change heat transfer in the presence of natural convection effects in the molten NePCM. The finite element method was applied to integrate the governing equations for fluid motion and phase change heat transfer. The impact of wave amplitude and wave number of the heated tube, as well as the volume concertation of nanoparticles on the full-charging time of the LHTES unit, was addressed. The Taguchi optimization method was used to find an optimum design of the LHTES unit. The results showed that an increase in the volume fraction of nanoparticles reduces the charging time. Moreover, the waviness of the tube resists the natural convection flow circulation in the phase change domain and could increase the charging time.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Lokesh Kalapala ◽  
Jaya Krishna Devanuri

Abstract One of the challenges in the design and development of a latent heat storage unit (LHSU) is to increase the charging and discharging rates which are inherently low because of low thermal conductivity of phase change materials (PCM). Out of various heat transfer enhancement techniques, employing annular fins is very simple, efficient and no fabrication complexity is involved. Fin parameters (fin size and number of fins) significantly influence the enhancement in heat transfer rate. Hence, optimization of fin parameters is necessary for the efficient design of an LHSU. While designing an LHSU along with heat transfer rate, entropy generation should also be considered in order to make it exergetically efficient. Therefore, the present study is aimed at multi-objective optimization of annular fin parameters to minimize the melting time and entropy generation. Fin diameter and the number of fins are taken as the variables. The influence of these two variables on the melting time, average Nusselt number, energy stored, and distribution of entropy is presented. The melting rate is increased, and global entropy generation decreased by increasing the number of fins up to 15. An increase in the fin diameter reduced the melting time while entropy generation got increased. For the multi-objective optimization, the multi-objective optimization based on ratio analysis (MOORA) technique is chosen and the optimized values of fin diameter and number of fins are observed to be 80 mm and 15 respectively. Finally, optimized parameters are represented in non-dimensional form to make them applicable for any size of the LHSU.


Sign in / Sign up

Export Citation Format

Share Document