scholarly journals A Study on Hybrid DC Micro-Grid System

IJOSTHE ◽  
2018 ◽  
Vol 5 (5) ◽  
pp. 7
Author(s):  
Ritu Gupta ◽  
Amit Shrivastava

With the growing demand of electricity, deployment of microgrid is becoming an attractive option to meet the energy demands. At present, large-scale wind/solar hybrid system is of great potential for development. The large-scale wind/solar hybrid system is of higher reliability compared with wind power generation alone and solar power generation alone However, a grid connected microgrid suffers a crucial stability issues during a fault in utility grid. For stable operation of microgrid during fault in grid. In this paper transient stability of the microgrid is studied during fault in utility grid. This research work presents the design and implementation of a hybrid renewable energy system that allows a cost-efficient and sustainable energy supply of the loads. The integration of the solar system with the network is rather complex and expensive. With this construction proposal, however, it is not only possible to create an economical and simple hybrid system, but also a reliable, efficient and economical system.

2021 ◽  
Vol 7 (2) ◽  
pp. 19-24
Author(s):  
Ashish Srivastava ◽  
Dr. M S Dash

With the growing demand of electricity, deployment of micro grid is becoming an attractive option to meet the energy demands. At present, large-scale wind/solar hybrid system is of great potential for development. The large-scale wind/solar hybrid system is of higher reliability compared with wind power generation alone and solar power generation alone However, a grid-connected micro grid suffers from critical stability problems during a power grid failure. For stable operation of the micro grid during a grid failure. In this paper, the transition stability of the micro grid is examined during a power failure


2020 ◽  
Vol 170 ◽  
pp. 01015
Author(s):  
Avinash Kaldate ◽  
Amarsingh Kanase-Patil ◽  
Shashikant Lokhande

One downside to Green Energy is that it cannot be estimated. Therefore, determining the optimum planning and perfect working strategies for the resources to be included in the hybrid system is very important. HOMER software has been used in this research paper to solve the case study of the hybrid renewable energy system. Due to its extensive analytical capabilities and advanced prediction capabilities based on the sensitivity of variables, HOMER is one of the most used software for optimal planning purposes. A case study for the sizing of a renewable energy-based hybrid system is solved in this article, using the Hybrid Optimization of Multiple Energy Resources (HOMER) software. Photovoltaic panels (PV panels), wind turbines (WT), batteries, converters, electric charge and grid are used in case study. The results of the simulation are presented in graphical form and tabulated for better system visualization. The design of a system to supply 6.8 KWh/d whereas the peak is 1.04 KW electric loads has been performed using HOMER software. In order to allow the user to choose the most suitable option, a comparative analysis has made, showing the pros and cons of cases. Optimum construction conditions help to lower operating costs.


Author(s):  
Venkatachalam K M ◽  
V Saravanan

<p>The co-ordination of non-conventional energy technologies such as solar, wind, geothermal, biomass and ocean are gaining significance in India due to more energy requirements and high greenhouse gas emission. In this assessment, the sustainability of emerging the gird isolated hybrid solar photovoltaic (PV)/wind turbine (WT)/diesel generator (DG)/battery system for Arunai Engineering College (India) building is evaluated. The techno- economic and environmental research was inspected by HOMER Pro software by choosing the optimal combination depends on size of the components, renewable fraction, net present cost (NPC), cost of energy (COE) and greenhouse gas (GHG) emission of the hybrid system. From the acquired outcomes and sensitivity investigation, the optimal PV-WT-DG- Battery combination has a NPC of $28.944.800 and COE $0.1266/kWh, with an operating cost of $256.761/year. The grid isolated hybrid system is environmentally pleasant with a greenhouse gas emission of 2.692 kg/year with renewable fraction of 99.9%.</p>


2021 ◽  
Vol 236 ◽  
pp. 02016
Author(s):  
Jiaying Zhang ◽  
Yingfan Zhang

The power output of the photovoltaic power generation has prominent intermittent fluctuation characteristics. Large-scale photovoltaic power generation access will bring a specific impact on the safe and stable operation of the power grid. With the increase in the proportion of renewable energy sources such as wind power and photovoltaics, the phenomenon of wind abandonment and light abandonment has further increased. The photovoltaic power generation prediction is one of the critical technologies to solve this problem. It is of outstanding academic and application value to research photovoltaic power generation prediction methods and systems. Therefore, accurately carrying out the power forecast of photovoltaic power plants has become a research hot point in recent years. It is favored by scholars at home and abroad. First, this paper builds a simulation model of the photovoltaic cell based on known theoretical knowledge. Then it uses the density clustering algorithm (DBSCAN) in the clustering algorithm and classifies the original data. Finally, according to a series of problems such as the slow modeling speed of photovoltaic short-term power prediction, the bidirectional LSTM photovoltaic power prediction model, and CNN-GRU photovoltaic power prediction model based on clustering algorithm are proposed. After comparing the two models, it is concluded that the bidirectional LSTM prediction model is more accurate.


2015 ◽  
Vol 4 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Qais H. Alsafasfeh

Most recent research on renewable energy resources main one goal to make Jordan less dependent on imported energy with locally developed and produced solar power, this paper discussed the efficient system of Wind/ PV Hybrid System to be than main power sources for south part of Jordan, the proposed hybrid system design based on Smart Grid Methodology,  the solar energy will be installed on top roof of  electricity subscribers across the Governorate of Maan, Tafila, Karak and Aqaba and the wind energy will set in one site by this way the capital cost for project will be reduced also the  simulation result show   the feasibility  is a very competitive and feasible cost . Economics analysis of a proposed renewable energy system was made using HOMER simulation and evaluation was completed with the cost per kilowatt of EDCO company, the net present cost is $2,551,676,416, the cost of energy is 0.07kWhr with a renewable fraction of 86.6 %.


Author(s):  
Fahd Diab ◽  
Hai Lan

Hybrid Renewable Energy System (HRES) is an attractive system for stand-alone electrification in remote areas. The hydrokinetic power avoids all the disadvantages of hydropower, unlike dams that have obstructed the natural water flow and ended up displacing animals and people. The main objective of this research work is to provide a feasibility study of using SMART MONOFLOAT hydrokinetic power in hybrid photovoltaic (PV)/HKT/diesel/battery system to satisfy the electrical energy needs for the selected rural households in Naga Hammadi, Egypt in this study. The SMART MONOFLOAT hydrokinetic turbine has been used as it was developed to produce a maximum amount of electrical power with the kinetic energy of flowing water. The well-known Hybrid Optimization of Multiple Electric Renewables (HOMER) software is used as a software tool in this study. The 22-year average monthly solar radiation data for the selected rural households in Naga Hammadi, located at latitude of 26.013 and longitude of 32.32 was obtained from National Aeronautics and Space Administration (NASA) database. The average monthly current velocity data of the Nile River used in this study was collected for a single year during 1991 after construction of the Aswan Dam in 1904. According to the simulation results in this work, it was found that the optimum HRES consisting of; 90 kW PV panels, 90 kW HKTs, 22 kW diesel generators, 60 kW power converters and 225 batteries. In addition to that, a great reduction in greenhouse gases (GHG) emission during the project lifetime could be achieved by using the optimum system.


Sign in / Sign up

Export Citation Format

Share Document