scholarly journals Techno economic environmental assessment of hybrid renewable energy system in India

Author(s):  
Venkatachalam K M ◽  
V Saravanan

<p>The co-ordination of non-conventional energy technologies such as solar, wind, geothermal, biomass and ocean are gaining significance in India due to more energy requirements and high greenhouse gas emission. In this assessment, the sustainability of emerging the gird isolated hybrid solar photovoltaic (PV)/wind turbine (WT)/diesel generator (DG)/battery system for Arunai Engineering College (India) building is evaluated. The techno- economic and environmental research was inspected by HOMER Pro software by choosing the optimal combination depends on size of the components, renewable fraction, net present cost (NPC), cost of energy (COE) and greenhouse gas (GHG) emission of the hybrid system. From the acquired outcomes and sensitivity investigation, the optimal PV-WT-DG- Battery combination has a NPC of $28.944.800 and COE $0.1266/kWh, with an operating cost of $256.761/year. The grid isolated hybrid system is environmentally pleasant with a greenhouse gas emission of 2.692 kg/year with renewable fraction of 99.9%.</p>

The global climate change and rapidly growing population over the decades are creating an enormous burden on conventional energy sources. Global environmental concern is expected for the proper planning of renewable sources to increase a positive impact on global warming. The hybrid renewable energy system is proposed for optimum sizing, costing, quality, and reliability of supply for the standalone system. This research study also includes a multi-objective optimization of the Net Present Cost (NPC)t, fuel cost, operating cost, and Cost of Energy of the hybrid system. A hybrid renewable energy system has been designed, which includes solar, wind, battery, and diesel generator for a standalone off-grid. The simulation and techno-economic analysis of case studies indicate that the hybrid system decreases the operating cost according to meteorological conditions. The employed algorithm, for power management, results in minimum use of diesel generator and a reduction in fuel cost. Furthermore, the proposed system shows better results when analyzed for Loss of power supply probability, Renewable factor, Carbon content, and Sensitivity. Thus, the proposed model proves that minimum utilization of diesel generator requires maximum utilization of renewable energy sources, thereby reducing the emission of greenhouse gases and reducing global warming.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1868
Author(s):  
Michail Katsivelakis ◽  
Dimitrios Bargiotas ◽  
Aspassia Daskalopulu ◽  
Ioannis P. Panapakidis ◽  
Lefteri Tsoukalas

Hybrid Renewable Energy Systems (HRES) are an attractive solution for the supply of electricity in remote areas like islands and communities where grid extension is difficult. Hybrid systems combine renewable energy sources with conventional units and battery storage in order to provide energy in an off-grid or on-grid system. The purpose of this study is to examine the techno-economical feasibility and viability of a hybrid system in Donoussa island, Greece, in different scenarios. A techno-economic analysis was conducted for a hybrid renewable energy system in three scenarios with different percentages of adoption rate (20%, 50% and 100%)and with different system configurations. Using HOMER Pro software the optimal system configuration between the feasible configurations of each scenario was selected, based on lowest Net Present Cost (NPC), minimum Excess Electricity percentage, and Levelized Cost of Energy (LCoE). The results obtained by the simulation could offer some operational references for a practical hybrid system in Donoussa island. The simulation results confirm the application of a hybrid system with 0% of Excess Electricity, reasonable NPC and LCoE and a decent amount of renewable integration.


2018 ◽  
Vol 5 (1) ◽  
pp. 72-80
Author(s):  
Roziah Zailan ◽  
Siti Nurzalikha Zaini ◽  
Muhammad Ikram Mohd Rashid ◽  
A.A Razak

Techno-economic study is needful to optimize the usage of renewable energy components that targeting low cost of electricity generation system. The selected case study area is coastal area in Pekan, Pahang, Malaysia. The autonomous system designed in this study is hybrid standalone PV-wind-diesel energy system to fulfil a 20.1 kWh/day demand for a coastal housing. Such power system was designed and optimized further to meet the power demand at a minimum cost of energy using energy optimization software, Hybrid Optimization Model for Electric Renewables (HOMER). The analysis was focused on the operational characteristics, economics and environmental. The standalone PV-wind-diesel energy system has total net present cost about $61, 911 with cost of energy $0.66/kWh. Apparently, the generation of electricity from both wind turbine and PV was inflated with the diesel generator system. From the payback period calculation, time taken to recover full capital invested through the installation of hybrid PV-wind-diesel is six years. Moreover, the installation of diesel generator should be optimizing in order to mitigate the environmental emissions


Author(s):  
Sylvester W. Chisale ◽  
Zaki Sari

Malawi has current electrification rate of less than 10% for a population of 18 million connected to the grid. The electricity generation company in Malawi (EGENCO) is greatly affected by low water levels making it difficult to satisfy the existing demand of electricity. This makes it difficult for Malawi to extend its National electricity grid. Thus, the aim of the study is to design stand-alone hybrid renewable energy system which is economically and technically feasible with focus on hydropower, wind, solar and battery bank within Dwangwa area. The study area is estimated to have 420 households, commercial and public service load with primary load demand of 5,556.31 kWh/day and peak load of 302.93 kW. River discharge data were collected from ministry of irrigation and water development while solar and wind data were collected from NASA. HOMER modeling tool was used to design a stand-alone system. From simulation results, the best design flow for Dwangwa river is 159 L/s at elevation of 100 metres and the best hybrid system combination was hydropower-wind-solar-battery and converter. The whole hybrid system initial capital cost was $2,662,638 while Net present cost (NPC) and levelized cost of energy (LCOE) were $3,597,197 and $0.134/kWh respectively. However, the cost of electricity in Malawi on the grid is K88.02/kWh ($0.11/kWh) which makes the system expensive. Therefore, the study has shown that the hybrid system is not economically viable. However, Government intervention can help to make the system monetarily acceptable and viable.


2011 ◽  
Vol 12 (1) ◽  
pp. 57-77
Author(s):  
James W Lewis ◽  
Morton A Barlaz ◽  
Akhtar Tayebali ◽  
S Ranji Ranjithan

Sign in / Sign up

Export Citation Format

Share Document