scholarly journals Upper bound of probability of receiving error of aperiodic pseudo-random sequence at jamming

Author(s):  
Iscandar Maratovich Azhmukhamedov ◽  
Evgeny Melnikov

The article discusses the obtained estimate of the upper bounds for the probable receiving error of the synchronizing sequence during sensor phasing of aperiodic pseudo-random sequences (CRR) in broadband communication systems in the channels of low quality with strong disturbances of natural and organized structure. The obtained results allow to design synchronization systems of pseudo-random sequences for the worst case, which guarantees their reliable operation in low-quality channels, and, unlike the well-known methods, the estimation of synchronization of aperiodic pseudo-random sequence sensors doesn’t depend on the error distribution in the communication channel and the period of sequence. The appointed differences simplify the evaluation of synchronization in the operation of broadband communication systems in low-quality channels.

Author(s):  
Kenneth A Michelson ◽  
Chris A Rees ◽  
Jayshree Sarathy ◽  
Paige VonAchen ◽  
Michael Wornow ◽  
...  

Abstract Background Hospital inpatient and intensive care unit (ICU) bed shortfalls may arise due to regional surges in volume. We sought to determine how interregional transfers could alleviate bed shortfalls during a pandemic. Methods We used estimates of past and projected inpatient and ICU cases of coronavirus disease 2019 (COVID-19) from 4 February 2020 to 1 October 2020. For regions with bed shortfalls (where the number of patients exceeded bed capacity), transfers to the nearest region with unused beds were simulated using an algorithm that minimized total interregional transfer distances across the United States. Model scenarios used a range of predicted COVID-19 volumes (lower, mean, and upper bounds) and non–COVID-19 volumes (20%, 50%, or 80% of baseline hospital volumes). Scenarios were created for each day of data, and worst-case scenarios were created treating all regions’ peak volumes as simultaneous. Mean per-patient transfer distances were calculated by scenario. Results For the worst-case scenarios, national bed shortfalls ranged from 669 to 58 562 inpatient beds and 3208 to 31 190 ICU beds, depending on model volume parameters. Mean transfer distances to alleviate daily bed shortfalls ranged from 23 to 352 miles for inpatient and 28 to 423 miles for ICU patients, depending on volume. Under all worst-case scenarios except the highest-volume ICU scenario, interregional transfers could fully resolve bed shortfalls. To do so, mean transfer distances would be 24 to 405 miles for inpatients and 73 to 476 miles for ICU patients. Conclusions Interregional transfers could mitigate regional bed shortfalls during pandemic hospital surges.


2016 ◽  
Vol 4 (1) ◽  
pp. 150-163 ◽  
Author(s):  
Rizky Pratama Hudhajanto ◽  
I Gede Puja Astawa ◽  
Amang Sudarsono

Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) is the most used wireless transmission scheme in the world. However, its security is the interesting problem to discuss if we want to use this scheme to transmit a sensitive data, such as in the military and commercial communication systems. In this paper, we propose a new method to increase the security of MIMO-OFDM system using the change of location of fake subcarrier. The fake subcarriers’ location is generated per packet of data using Pseudo Random sequence generator. The simulation results show that the proposed scheme does not decrease the performance of conventional MIMO-OFDM. The attacker or eavesdropper gets worse Bit Error Rate (BER) than the legal receiver compared to the conventional MIMO-OFDM system.


2020 ◽  
Vol 30 (2) ◽  
pp. 49-54
Author(s):  
I. V. Egorov ◽  
D. V. Gaivoronskii

The physical and logical organization of most existing communication systems provides for additional options (transmission of known preambles, the presence of an additional synchronization channel) that simplify synchronization. At the same time, in the practical implementation of radio communication systems, it is necessary to solve the problems of developing additional synchronization mechanisms that can reduce the time it takes to synchronize to reduce energy consumption and increase channel capacity. Thus, the existing problem of the asynchrony of the generators of physically remote radio stations is relevant. One of the possible solutions is asynchronous signal reception with the direct sequence spread spectrum. It allows converting the original binary signal into a pseudo-random sequence for modulating the carrier. The current article is devoted to the characterization of this method and has the following items presented: the transmitter and receiver block diagram, sufficient to explain the proposed method; methods for compensating for effects arising from the asynchrony of the transmitter and receiver generators. Since synchronization is generated according to the correlation peaks that correspond to the data bits, it is possible to set the frequency of the chips on the transmitter to jitter artificially and supplement the pseudo-random sequence with several random chips, which complicates the unauthorized detection of the transmitted signal.


2017 ◽  
Vol 825 ◽  
pp. 704-742 ◽  
Author(s):  
Jose M. Pozo ◽  
Arjan J. Geers ◽  
Maria-Cruz Villa-Uriol ◽  
Alejandro F. Frangi

Flow complexity is related to a number of phenomena in science and engineering and has been approached from the perspective of chaotic dynamical systems, ergodic processes or mixing of fluids, just to name a few. To the best of our knowledge, all existing methods to quantify flow complexity are only valid for infinite time evolution, for closed systems or for mixing of two substances. We introduce an index of flow complexity coined interlacing complexity index (ICI), valid for a single-phase flow in an open system with inlet and outlet regions, involving finite times. ICI is based on Shannon’s mutual information (MI), and inspired by an analogy between inlet–outlet open flow systems and communication systems in communication theory. The roles of transmitter, receiver and communication channel are played, respectively, by the inlet, the outlet and the flow transport between them. A perfectly laminar flow in a straight tube can be compared to an ideal communication channel where the transmitted and received messages are identical and hence the MI between input and output is maximal. For more complex flows, generated by more intricate conditions or geometries, the ability to discriminate the outlet position by knowing the inlet position is decreased, reducing the corresponding MI. The behaviour of the ICI has been tested with numerical experiments on diverse flows cases. The results indicate that the ICI provides a sensitive complexity measure with intuitive interpretation in a diversity of conditions and in agreement with other observations, such as Dean vortices and subjective visual assessments. As a crucial component of the ICI formulation, we also introduce the natural distribution of streamlines and the natural distribution of world-lines, with invariance properties with respect to the cross-section used to parameterize them, valid for any type of mass-preserving flow.


2019 ◽  
Vol 25 ◽  
pp. 01002 ◽  
Author(s):  
Lili Zhao ◽  
Peng Zhang ◽  
Qicai Dong ◽  
Xiangyang Huang ◽  
Jianhua Zhao ◽  
...  

Wireless communication technology has been developed rapidly after entering the 21st century. Data transfer rate increased significantly as well as the bandwidth became wider and wider from 2G to 4G in wireless communication systems. Channel estimation is an import part of any communication systems; its accuracy determines the quality of the whole communication. Channel estimation methods of typical wireless communication systems such as UWB, 2G and 3G have been researched.


Sign in / Sign up

Export Citation Format

Share Document