scholarly journals CALCULATION OF INDUCTANCE FOR A BI-DIRECTIONAL DC/DC CONVERTER IN AUTONOMOUS UNDERWATER APPARATUS

Author(s):  
Boris Aleksandrovich Avdeyev

Submersible apparatus work at a depth inaccessible for divers and submarines. They are small devices linked with the depot ship due to their limited autonomous capacity. Application of submersible apparatus helps to enlarge the range of their operation and to decrease maintenance costs. Accumulator storage batteries with relatively low voltage are the main power source of these apparatus. DC converter operation is influenced by the inductance value. The article deals with the problems of calculating the inductance for bi-directional DC voltage converters for autonomous underwater apparatus. The scheme of the converter is presented, its operation modes are considered, equations describing the processes in the electrical circuit for different states of the IGBT-transistor are compiled. An expression describing the current oscillations in the regime of continuous current with certain assumptions is derived. It is stated that the inductance should be greater than a certain value to ensure the operation of the DC converter in the continuous current mode. Dependences of the current ripple through the inductor are plotted as a function of the inductance. Simulation of the DC converter made in the Simulink package is performed and oscillograms of the current and voltage at the output of the converter are shown, which confirm the correctness of the procedure for determining the minimum value of the inductance to ensure operation of the DC converter in the continuous current mode.

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1728 ◽  
Author(s):  
Salvatore Musumeci ◽  
Radu Bojoi ◽  
Eric Armando ◽  
Stefano Borlo ◽  
Fabio Mandrile

In this article, a three-leg interleaved boost Power Factor Corrector (IBPFC) converter for energy-efficient LED lighting systems connected to the main grid was discussed. This IBPFC circuit presented features 60 kHz of commutation frequency and up to 3 kW of power rating. The controlled rectifier front-end boost PFC supplied a DC/DC converter to drive power LEDs suitable for street lighting or a lighting system for a stadium, etc. The IBPFC operated in continuous current mode (CCM). The ripple impact of the IBPFC converter was analyzed and a novel methodology of inductance design was presented. In the proposed design approach, the derivative calculation of the current ripple peak compared with the derivative of the input current was used to define a critical inductance value to ensure the CCM condition. Experimental validation was provided on a 3kW prototype.


2020 ◽  
Vol 10 (4) ◽  
pp. 39
Author(s):  
Maziar Rastmanesh ◽  
Ezz El-Masry ◽  
Kamal El-Sankary

Photo-voltaic (PV) power harvest can have decent efficiency when dealing with high power. When operating with a DC–DC boost converter during the low-power harvest, its efficiency and output voltage are degraded due to excessive losses in the converter components. The objective of this paper is to present a systematic approach to designing an efficient low-power photo-voltaic harvesting topology with an improved efficiency and output voltage. The proposed topology uses a boost converter with and extra inductor in recycled and synchro-recycled techniques in continuous current mode (CCM). By exploiting the non-linearity of the PV cell, it reduces the power loss and using the current stored in the second inductor, it enhances the output voltage and output power simultaneously. Further, by utilizing the Metal Oxide Silicon Field Effect Transistor’s (MOSFET) body diode as a switch, it maintains a minimum hardware, and introduces a negligible impact on the reliability. The test results of the proposed boost converters show that it achieves a decent power and output voltage. Theoretical and experimental results of the proposed topologies with a tested prototype are presented along with a strategy to maximize power and voltage conversion efficiencies and output voltage.


2016 ◽  
Vol 9 (4) ◽  
pp. 710-718 ◽  
Author(s):  
Federico Martin Ibanez ◽  
Jose Martin Echeverria ◽  
Daniel Astigarraga ◽  
Luis Fontan

In order to analyze the bifurcation and chaos of Superbuck converter in Continuous Current Mode (CCM), a new method of time-frequency diagram based on Wigner-Ville distribution is proposed. The method is used to analyze the variation of the energy component of the output voltage with frequency and time. It reveals that the Superbuck converter exhibits period-1 bifurcation, period-2 bifurcation, period-4 bifurcation and chaos under different reference current. The results of the time-frequency diagram are consistent with the results of the bifurcation diagram, time-domain diagram, phase diagram and Poincare section. It proves that the method can deeply understand the nature of bifurcation and chaos in Superbuck converter, and it provides a new way to analyze the nonlinear phenomena of DC-DC converter


Sign in / Sign up

Export Citation Format

Share Document