scholarly journals Characterization of Antimicrobial Susceptibility, Extended-Spectrum β-Lactamase Genes and Phylogenetic Groups of Enteropathogenic <italic>Escherichia coli</italic> Isolated from Patients with Diarrhea

2020 ◽  
Vol 11 (5) ◽  
pp. 327-333
Author(s):  
Erfaneh Jafari ◽  
Saeid Mostaan ◽  
Saeid Bouzari
2010 ◽  
Vol 59 (5) ◽  
pp. 592-598 ◽  
Author(s):  
Justine S. Gibson ◽  
Rowland N. Cobbold ◽  
Darren J. Trott

Multidrug-resistant (MDR) Escherichia coli causes extraintestinal infections in both humans and animals. This study aimed to determine whether MDR E. coli isolates cultured from extraintestinal infections in several animal species were clonal and crossed host-species boundaries, as suggested by initial characterization of a subset of canine and human isolates, or whether they represented a diverse group of host-specific strains. Isolates were obtained either from The University of Queensland Veterinary Diagnostic Laboratory or from an independent diagnostic laboratory between October 1999 and December 2007. Ninety-six MDR E. coli isolates cultured from extraintestinal clinical infections in 55 animals comprising dogs (n=45), cats (n=5), horses (n=4) and a koala (n=1) were analysed by phylogenetic grouping, antimicrobial susceptibility testing and PFGE. The isolates were cultured from the urinary tract (n=61), reproductive tract (n=11), wounds (n=11), surgical site infections (n=4) and other sites (n=9). Isolates from the same E. coli phylogenetic group with 100 % PFGE similarity and the same antimicrobial susceptibility pattern were considered to be repeat clones and excluded from further analysis. Three of the four E. coli phylogenetic groups (A, n=19; B1, n=8; and D, n=49) were represented. Analysis of PFGE similarity identified clusters of related phylogenetic group A isolates [clonal group (CG) 1] and group D isolates (CG2 and CG3), with the remainder of the isolates demonstrating diversity. The majority of CG2 isolates contained a plasmid-borne AmpC β-lactamase, imparting resistance to cefoxitin and third-generation cephalosporins, and were obtained between 2000 and 2003. CG3 isolates were sensitive to these antimicrobial agents and appeared to replace CG2 isolates as the dominant clones from 2003 to 2007. Apart from several canine and feline isolates that demonstrated clonality, PFGE profiles tended to be divergent across species. Whilst MDR E. coli isolates from extraintestinal infections in different animal species are diverse, some dominant CGs may persist over several years.


Author(s):  
Erfaneh Jafari ◽  
Mana Oloomi ◽  
Saeid Bouzari

Abstract Background Shiga toxin‐producing Escherichia coli (STEC) are among common foodborne bacterial pathogens and healthy livestock are the main source of this bacterium. Severe diseases attribute to two types of cytotoxin Stx1 and Stx2, which are also called Shiga toxin (Stx). Infection of humans with STEC may result in Acute diarrhea with or without bleeding, hemorrhagic colitis (HC) and the hemolytic uremic syndrome (HUS). As antibiotic resistance is increasingly being reported among STEC isolates obtained from livestock and patients worldwide, in this study the pattern of antibiotic resistance in clinical isolates was determined. Methods Stool samples were collected from patients with diarrhea. All samples were cultured and identified by biochemical and molecular tests. Antimicrobial susceptibility test and assessment of extended-spectrum β-lactamase (ESBL)-related genes were conducted. Moreover, phylogenetic groups were analyzed using quadruplex PCR, and DNA analysis assessed multi-locus sequence types (MLST). Results Out of 340 E. coli samples, 174 were identified as STEC by PCR. Antimicrobial susceptibility test results showed that, 99.4%, 96% and 93.1% of isolates were susceptible to imipenem/ertapenem, piperacillin–tazobactam and amikacin, respectively. The highest resistance was towards ampicillin (68.4%), followed by trimethoprim–sulfamethoxazole (59.8%), and tetracycline (57.5%). A total of 106 (60.9%) isolates were multidrug resistance (MDR) and 40.8% of isolates were determined to be extended spectrum β-lactamase producers. In 94.4% of isolates, genes responsible for ESBL production could be detected, and blaTEM was the most prevalent, followed by blaCTX-M9. Furthermore, phylogenetic grouping revealed that majority of STEC strains belonged to Group C, followed by Groups E, B2 and A. MLST unveiled diverse ST types. Conclusion A periodical surveillance studies and thorough understanding of antibiotic resistant profiles in STEC isolates could help select effective antibiotic treatment for patients and develop strategies to effectively manage food contamination and human infections.


2008 ◽  
Vol 53 (1) ◽  
pp. 323-326 ◽  
Author(s):  
Hedi Mammeri ◽  
Moreno Galleni ◽  
Patrice Nordmann

ABSTRACT Two AmpC variants harboring the S287N substitution were obtained by mutagenesis from cephalosporinases representative of the phylogenetic groups A and B2 of Escherichia coli. Their biochemical characterization revealed that the S287N replacement led to an important increase in the catalytic efficiency toward extended-spectrum cephalosporins in the AmpC β-lactamase of group A only.


2011 ◽  
Vol 60 (9) ◽  
pp. 1344-1352 ◽  
Author(s):  
Abouddihaj Barguigua ◽  
Fatima El Otmani ◽  
Mustapha Talmi ◽  
Fatna Bourjilat ◽  
Fatima Haouzane ◽  
...  

2012 ◽  
Vol 78 (13) ◽  
pp. 4677-4682 ◽  
Author(s):  
Charlotte Valat ◽  
Frédéric Auvray ◽  
Karine Forest ◽  
Véronique Métayer ◽  
Emilie Gay ◽  
...  

ABSTRACTIn line with recent reports of extended-spectrum beta-lactamases (ESBLs) inEscherichia coliisolates of highly virulent serotypes, such as O104:H4, we investigated the distribution of phylogroups (A, B1, B2, D) and virulence factor (VF)-encoding genes in 204 ESBL-producingE. coliisolates from diarrheic cattle. ESBL genes, VFs, and phylogroups were identified by PCR and a commercial DNA array (Alere, France). ESBL genes belonged mostly to the CTX-M-1 (65.7%) and CTX-M-9 (27.0%) groups, whereas those of the CTX-M-2 and TEM groups were much less represented (3.9% and 3.4%, respectively). One ESBL isolate wasstx1andeaepositive and belonged to a major enterohemorrhagicE. coli(EHEC) serotype (O111:H8). Two other isolates wereeaepositive butstxnegative; one of these had serotype O26:H11. ESBL isolates belonged mainly to phylogroup A (55.4%) and, to lesser extents, to phylogroups D (25.5%) and B1 (15.6%), whereas B2 strains were quasi-absent (1/204). The number of VFs was significantly higher in phylogroup B1 than in phylogroups A (P= 0.04) and D (P= 0.02). Almost all of the VFs detected were found in CTX-M-1 isolates, whereas only 64.3% and 33.3% of them were found in CTX-M-9 and CTX-M-2 isolates, respectively. These results indicated that the widespread dissemination of theblaCTX-Mgenes within theE. colipopulation from cattle still spared the subpopulation of EHEC/Shiga-toxigenicE. coli(STEC) isolates. In contrast to other reports on non-ESBL-producing isolates from domestic animals, B1 was not the main phylogroup identified. However, B1 was found to be the most virulent phylogroup, suggesting host-specific distribution of virulence determinants among phylogenetic groups.


2010 ◽  
Vol 54 (7) ◽  
pp. 3043-3046 ◽  
Author(s):  
Stephen P. Hawser ◽  
Samuel K. Bouchillon ◽  
Daryl J. Hoban ◽  
Robert E. Badal ◽  
Rafael Cantón ◽  
...  

ABSTRACT From 2002 to 2008, there was a significant increase in extended-spectrum beta-lactamase (ESBL)-positive Escherichia coli isolates in European intra-abdominal infections, from 4.3% in 2002 to 11.8% in 2008 (P < 0.001), but not for ESBL-positive Klebsiella pneumoniae isolates (16.4% to 17.9% [P > 0.05]). Hospital-associated isolates were more common than community-associated isolates, at 14.0% versus 6.5%, respectively, for E. coli (P < 0.001) and 20.9% versus 5.3%, respectively, for K. pneumoniae (P < 0.01). Carbapenems were consistently the most active drugs tested.


2015 ◽  
Vol 78 (5) ◽  
pp. 1018-1023 ◽  
Author(s):  
MEILI XI ◽  
QIAN WU ◽  
XIN WANG ◽  
BAOWEI YANG ◽  
XIAODONG XIA ◽  
...  

Extended-spectrum β-lactamase (ESBL)–producing Escherichia coli strains have been reported worldwide; however, the incidence and characterization of foodborne ESBL-producing E. coli strains have been rarely reported in the People's Republic of China. Among a collection of 659 E. coli isolates recovered from retail foods in Shaanxi Province, People's Republic of China, 223 cefoxitin-resistant and/or cefoperazone-resistant isolates were screened for ESBL production with the double disk diffusion test. The ESBL-producing isolates were characterized for antimicrobial resistance and the presence of blaTEM, blaSHV, and blaCTX-M genes. Isolates with blaCTX-M were further classified by PCR as having blaCTX-M-1, blaCTX-M-2, blaCTX-M-8, blaCTX-M-9, or blaCTX-M-25. One hundred forty-seven isolates were identified as ESBL positive. PCR detection revealed that 146 isolates (99.3%) contained the blaCTX-M gene. Among these isolates, 42 (28.8%) were positive for the enzyme CTX-M-1, 5 (3.4%) for CTX-M-2, and 99 (67.8%) for CTX-M-9. No CTX-M-8 and CTX-M-25 were found in this study. One hundred fifteen isolates (78.2%) were positive for the blaTEM gene, but blaSHV was not detected. Among the 147 ESBL-producing E. coli isolates, 75 (51.0%), 35 (23.8%), and 4 (2.7%) isolates were positive for blaTEM and blaCTX-M-9, blaTEM and blaCTX-M-1, and blaTEM and blaCTX-M-2, respectively. All of the 147 ESBL-producing isolates were resistant to three or more non–β-lactam antibiotics. This study provides evidence that foodborne E. coli can harbor ESBL-encoding genes. Thus, food could be a vehicle for the dissemination of ESBL-producing E. coli strains, a situation that requires surveillance and appropriate management strategies.


Sign in / Sign up

Export Citation Format

Share Document