scholarly journals Cooperative Coevolution with Dynamic Species-Size Strategy for Vibration-Based Damage Detection in Plates

Author(s):  
Jitti Pattavanitch ◽  
Puttha Jeenkour ◽  
Kittipong Boonlong

Vibration-based damage detection is based on the fact that vibration characteristics such as natural frequencies and mode shapes of structures are changed when the damage occurs. This paper proposes dynamic species-size strategy in cooperative coevolution concept. The resulting algorithm, cooperative coevolutionary genetic algorithm with dynamics species-size (CCGADSS), is used as the optimization algorithm in the vibration-based damage detection in plates. The objective function is numerically calculated from the difference between experimentally vibration characteristics and numerically evaluated vibration characteristics of the predicted damage. In finite element model for objective calculation, the plates are equally divided into 64 elements. There are 2 different cases with dissimilar occurred damage in plates are considered. In first case, the plate hase only one region consisting of 4 elements which are together connected and have same damage. In second case, there are 5 separated elements which are damaged differently. In order to demonstrate the performance of the dynamic species-size strategy, 3 optimization algorithms, which are genetic algorithm (GA), cooperative coevolutionary genetic algorithm (CCGA), and CCGADSS. The results indicate that CCGADSS is superior to GA and CCGA. Moreover solutions obtained using CCGADSS are quite close the actual damage. These results show that the dynamic species-size strategy can enhance performance of cooperative coevolution concept.

2014 ◽  
Vol 6 ◽  
pp. 624949 ◽  
Author(s):  
Kittipong Boonlong

Vibration-based damage detection, a nondestructive method, is based on the fact that vibration characteristics such as natural frequencies and mode shapes of structures are changed when the damage happens. This paper presents cooperative coevolutionary genetic algorithm (CCGA), which is capable for an optimization problem with a large number of decision variables, as the optimizer for the vibration-based damage detection in beams. In the CCGA, a minimized objective function is a numerical indicator of differences between vibration characteristics of the actual damage and those of the anticipated damage. The damage detection in a uniform cross-section cantilever beam, a uniform strength cantilever beam, and a uniform cross-section simply supported beam is used as the test problems. Random noise in the vibration characteristics is also considered in the damage detection. In the simulation analysis, the CCGA provides the superior solutions to those that use standard genetic algorithms presented in previous works, although it uses less numbers of the generated solutions in solution search. The simulation results reveal that the CCGA can efficiently identify the occurred damage in beams for all test problems including the damage detection in a beam with a large number of divided elements such as 300 elements.


Author(s):  
Wen-Yu He ◽  
Wei-Xin Ren ◽  
Lei Cao ◽  
Quan Wang

The deflection of the beam estimated from modal flexibility matrix (MFM) indirectly is used in structural damage detection due to the fact that deflection is less sensitive to experimental noise than the element in MFM. However, the requirement for mass-normalized mode shapes (MMSs) with a high spatial resolution and the difficulty in damage quantification restricts the practicability of MFM-based deflection damage detection. A damage detection method using the deflections estimated from MFM is proposed for beam structures. The MMSs of beams are identified by using a parked vehicle. The MFM is then formulated to estimate the positive-bending-inspection-load (PBIL) caused deflection. The change of deflection curvature (CDC) is defined as a damage index to localize damage. The relationship between the damage severity and the deflection curvatures is further investigated and a damage quantification approach is proposed accordingly. Numerical and experimental examples indicated that the presented approach can detect damages with adequate accuracy at the cost of limited number of sensors. No finite element model (FEM) is required during the whole detection process.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Ziemowit Dworakowski ◽  
Kajetan Dziedziech ◽  
Pawel Zdziebko ◽  
Krzysztof Mendrok

This paper presents the use of laser vibrometer measurements to detect and locate damage in a metal plate. An algorithm based on local spatial filters was selected, and for the purpose of comparison, the fault location was also determined based on the wavelet analysis of mode shapes. The research was carried out first on the created finite element model of aluminum plate, where two kinds of damage of increasing size and temperature change were simulated. After obtaining positive results, a laboratory experiment was carried out, which consisted of measuring the vibration of the aluminum plate with the laser vibrometer in undamaged condition, at increased temperatures, and with various damage scenarios. The conclusions of the laboratory experiment confirm the damage detection capabilities of the methods but question their damage localization potential.


Author(s):  
Mahendran Govindasamy ◽  
Chandrasekaran Kesavan ◽  
Malhotra Santkumar

The main objective of this study is to evaluate the dynamics-based techniques for damage detection in laminated composite cantilevered rectangular plates and cylindrical shells with damages in the form of surface macro-level cracks using finite element analysis (FEA). However, the quantitative change in global vibration characteristics is not sufficiently sensitive to local structural damages especially to small size damages. Hence certain parameters called damage indicators based on mode shape curvature, which are the second derivatives of the vibration characteristics (mode shapes), are used in this study to detect the location and size of even small damages accurately in laminated composite structures. The commercial FEA package ANSYS is used for the theoretical modal analysis to generate the natural frequencies and normalized mode shapes of the intact and damaged structures. Experimental investigations are carried out on the laminated plate and shell structural elements to provide a validation of the analysis. Experimental investigations are carried out on the laminated composite (E-glass unidirectional fibers reinforced epoxy resin) cantilevered plate and shell structural elements to provide a validation of the analysis. The effectiveness of these methods is clearly demonstrated by the results obtained.


Author(s):  
Ivan Duvnjak ◽  
Domagoj Damjanović ◽  
Natalia Sabourova ◽  
Niklas Grip ◽  
Ulf Ohlsson ◽  
...  

<p>Damage assessment of structures includes estimation of location and severity of damage. Quite often it is done by using changes of dynamic properties, such as natural frequencies, mode shapes and damping ratios, determined on undamaged and damaged structures. The basic principle is to use dynamic properties of a structure as indicators of any change of its stiffness and/or mass. In this paper, two new methods for damage detection are presented and compared. The first method is based on comparison of normalised modal shape vectors determined before and after damage. The second method uses so-called &#119897;l-norm regularized finite element model updating. Some important properties of these methods are demonstrated using simulations on a Kirchhoff plate. The pros and cons of the two methods are discussed. Unique aspects of the methods are highlighted.</p>


2006 ◽  
Vol 3-4 ◽  
pp. 309-314 ◽  
Author(s):  
Irina Trendafilova

This study investigates the possibilities for damage detection and location using the vibration response of an aircraft wing. A simplified finite element model of an aircraft wing is used to model its vibration response. The model is subjected to modal analysis- its natural frequencies are estimated and the mode shapes are determined. Two types of damage are considered - localised and distributed. The wing model is divided into a number of volumes. The goal of the study is to investigate the possibility to use the vibration response of an aircraft wing and especially its modal characteristics for the purposes of damage detection. So we’ll be trying to find suitable features, which can be used to detect damage and restrict it to one of the introduced volumes. The sensitivity of the modal frequencies of the model to damage in different locations is studied. Some general trends in the behaviour of these frequencies with change of the damage location are investigated. The utilization of the modal frequencies for detecting damage in a certain part of the wing is discussed


2018 ◽  
Vol 29 (20) ◽  
pp. 3923-3936 ◽  
Author(s):  
Andrew Jaeyong Choi ◽  
Jae-Hung Han

This article proposes a method for damage detection using vision-based monitoring with motion magnification technique. The methods based on the vibration characteristics of structures such as natural frequency, mode shapes, and modal damping have been applied to structural damage detection. However, the conventional methods have limitations for practical applications. Vision-based monitoring system can be employed as a new structural monitoring system because of its simplicity, potentially low cost, and unique capability of collecting high-resolution data. A methodology called video motion magnification has been developed to amplify non-visible small motions in a video to reveal the dynamic response. The video motion magnification method can be applied to measure small displacements to calculate the natural frequencies and the operational deflection shapes of the structures. Unlike conventional optimization methods, a genetic algorithm explores the entire solution space and can obtain the global optimum. In this article, identification of the location and magnitude of damage in a cantilever beam is formulated as an optimization problem using a real-value genetic algorithm by minimizing the objective function, which directly compares the first three natural frequencies changes from the phase-based motion magnification measurement and from the analytical model of a damaged cantilever beam.


Author(s):  
Amir Poursamad

Presented within this paper is the application of finite elements method combined with an evolutionary algorithm to the problem of damage detection in structural members using vibration data. The objective is to identify the position of the damage in structure, and to estimate the extent of the damage. To describe the damage, finite element method (FEM) is used here and the damage is modeled as a reduction in the stiffness of the associated element. Using this model, the effect of damage on the vibration characteristics of the structure is studied. The problem of damage detection is then formulated as an optimization problem. The decision variables are the position of damaged element and the extent of damage. The objective function is considered as the difference between measured natural frequencies and those obtained from FE model of the structure. Only natural frequencies are adopted here, because the measurement of mode shapes is usually accompanied by larger amount of error. The proposed damage detection approach is verified and assessed using a simulated cantilever Euler-Bernoulli beam.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5791
Author(s):  
Mark Richmond ◽  
Ursula Smolka ◽  
Athanasios Kolios

The modal response of a four-legged jacket structure to damages are explored and resulting considerations for damage detection are discussed. A finite element model of the Wikinger (Iberdrola) jacket structure is used to investigate damage detection. Damages, such as cracks, scour, corrosion and more, are modelled in a simulation environment. The resulting modal parameters are calculated, these parameters are compared to those from an unaltered structure and metrics are calculated including frequency change, modal assurance criterion and modal flexibility. A highly detailed design-model is used to conduct a sensitivity study on modal parameters for a range of changes. By conducting this on the same structure, this acts as a useful reference for those interested in the dynamic response of offshore wind jacket structures. Additionally, this paper addresses the issue of changes in mode parameters resulting from turbine yaw. This paper also considers the challenge of mode-swapping in semi-symmetric structures and proposes several approaches for addressing this. Damage typically results in a reduction of frequency and change in mode shapes, but in ways which can be distinguished from other structural changes, given the extent of this model. These findings are important considerations for modal-based damage detection of offshore wind support structures.


2013 ◽  
Vol 7 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Dora Foti

Damage detection in civil engineering structures using changes in measured modal parameters is an area of research that has received notable attention in literature in recent years. In this paper two different experimental techniques for predicting damage location and severity have been considered: the Change in Mode Shapes Method and the Mode Shapes Curvature Method. The techniques have been applied to a simply supported finite element bridge model in which damage is simulated by reducing opportunely the flexural stiffness EI. The results show that a change in modal curvature is a significant damage indicator, while indexes like MAC and COMAC – extensively and correctly used for finite element model updating - lose their usefulness in order to damage detection.


Sign in / Sign up

Export Citation Format

Share Document